×

The behaviour of the \(p(x)\)-Laplacian eigenvalue problem as \(p(x)\rightarrow \infty \). (English) Zbl 1182.35176

Summary: We study the behaviour of the solutions to the eigenvalue problem corresponding to the \(p(x)\)-Laplacian operator
\[ \begin{cases} -\text{div}(|\nabla u|^{p(x)-2}\nabla u)= \Lambda_{p(x)}|u|^{p(x)-2}u &\text{in }\Omega,\\ u=0 &\text{on }\partial\Omega, \end{cases} \]
as \(p(x)\to\infty\). We consider a sequence of functions \(p_n(x)\) that goes to infinity uniformly in \(\overline{\Omega}\). Under adequate hypotheses on the sequence \(p_n\), namely that the limits
\[ \nabla\ln p_n(x)\to\xi(x) \quad\text{and}\quad \frac{p_n}{n}(x)\to q(x) \]
exist, we prove that the corresponding eigenvalues \(\Lambda_{p_n}\) and eigenfunctions \(u_{p_n}\) verify that
\[ (\Lambda_{p_n})^{1/n}\to \Lambda_\infty, \quad u_{p_n}\to u_\infty \quad\text{uniformly in }\overline{\Omega}, \]
where \(\Lambda_\infty\), \(u_\infty\) is a nontrivial viscosity solution of the following problem
\[ \begin{cases} \min\big\{-\Delta_\infty u_\infty-|\nabla u_\infty|^2 \log(|\nabla u_\infty|) \langle\xi\nabla u_\infty\rangle,\;|\nabla u_\infty|^q-\Lambda_\infty u_\infty^q\big\}=0 &\text{in }\Omega,\\ u_\infty=0 &\text{on }\partial\Omega.\end{cases} \]

MSC:

35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] Aronsson, G., Extensions of functions satisfying Lipschitz conditions, Ark. Mat., 6, 551-561 (1967) · Zbl 0158.05001
[2] Aronsson, G.; Crandall, M. G.; Juutinen, P., A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc., 41, 439-505 (2004) · Zbl 1150.35047
[3] Barles, G.; Busca, J., Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term, Comm. Partial Differential Equations, 26, 2323-2337 (2001) · Zbl 0997.35023
[4] Bhattacharya, T.; DiBenedetto, E.; Manfredi, J. J., Limits as \(p \to \infty\) of \(\Delta_p u_p = f\) and related extremal problems, Rend. Semin. Mat. Univ. Politec. Torino, 1989, 15-68 (1991)
[5] Caselles, V.; Morel, J. M.; Sbert, C., An axiomatic approach to image interpolation, IEEE Trans. Image Process., 7, 376-386 (1998) · Zbl 0993.94504
[6] Crandall, M. G.; Ishii, H.; Lions, P. L., User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27, 1-67 (1992) · Zbl 0755.35015
[7] Deng, S. G., Eigenvalues of the \(p(x)\)-Laplacian Steklov problem, J. Math. Anal. Appl., 339, 925-937 (2008) · Zbl 1160.49307
[8] Diening, L.; Hästö, P.; Nekvinda, A., Open problems in variable exponent Lebesgue and Sobolev spaces, (Drabek, P.; Rakosnik, J., FSDONA04 Proceedings (2004), Milovy: Milovy Czech Republic), 38-58
[9] Evans, L. C.; Gangbo, W., Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137, 653 (1999) · Zbl 0920.49004
[10] Fan, X.; Zhang, Q.; Zhao, D., Eigenvalues of the \(p(x)\)-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302, 306-317 (2005) · Zbl 1072.35138
[11] García-Azorero, J.; Manfredi, J. J.; Peral, I.; Rossi, J. D., The Neumann problem for the ∞-Laplacian and the Monge-Kantorovich mass transfer problem, Nonlinear Anal., 66, 349-366 (2007) · Zbl 1387.35286
[14] Juutinen, P.; Lindqvist, P., On the higher eigenvalues for the ∞-eigenvalue problem, Calc. Var. Partial Differential Equations, 23, 2, 169-192 (2005) · Zbl 1080.35057
[15] Juutinen, P.; Lindqvist, P.; Manfredi, J. J., The ∞-eigenvalue problem, Arch. Ration. Mech. Anal., 148, 89-105 (1999) · Zbl 0947.35104
[16] Juutinen, P.; Lindqvist, P.; Manfredi, J. J., On the equivalence of viscosity solutions and weak solutions for a quasilinear equation, SIAM J. Math. Anal., 33, 3, 699-717 (2001) · Zbl 0997.35022
[17] Kováčik, O.; Rákosník, J., On spaces \(L^{p(x)}\) and \(W^{1, p(x)}\), Czechoslovak Math. J., 41, 116, 592-618 (1991) · Zbl 0784.46029
[18] Lindqvist, P., On the equation \(div(| \nabla u |^{p - 2} \nabla u) + \lambda | u |^{p - 2} u = 0\), Proc. Amer. Math. Soc., 109, 157-164 (1990) · Zbl 0714.35029
[20] Lindqvist, P.; Manfredi, J. J., The Harnack inequality for ∞-harmonic functions, Electron. J. Differential Equations, 5, 1-5 (1995) · Zbl 0818.35033
[23] Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, D. B., Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22, 167-210 (2009) · Zbl 1206.91002
[24] Peres, Y.; Sheffield, S., Tug-of-war with noise: A game theoretic view of the \(p\)-Laplacian, Duke Math. J., 145, 91-120 (2008) · Zbl 1206.35112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.