×

Spectral optimization of inhomogeneous plates. (English) Zbl 1523.74105

Summary: This article is devoted to the study of spectral optimization for inhomogeneous plates. In particular, we consider the optimization of the first eigenvalue of a vibrating plate with respect to its thickness and/or density. We prove the existence of an optimal thickness, using fine tools hinging on topological properties of rearrangement classes. In the case of a circular plate, we provide a characterization of this optimal thickness by means of Talenti inequalities. Moreover, we prove a stability result when assuming that the thickness and the density of the plate are linearly related. This proof relies on \(H\)-convergence tools applied to the biharmonic operator.

MSC:

74P10 Optimization of other properties in solid mechanics
74K20 Plates
74E05 Inhomogeneity in solid mechanics
74H45 Vibrations in dynamical problems in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
35Q93 PDEs in connection with control and optimization

References:

[1] Allaire, G., Shape Optimization by the Homogenization Method, Springer, New York, 2002, doi:10.1007/978-1-4684-9286-6. · Zbl 0990.35001
[2] Alvino, A., Trombetti, G., and Lions, P.-L., On optimization problems with prescribed rearrangements, Nonlinear Anal., 13 (1989), pp. 185-220, doi:10.1016/0362-546x(89)90043-6. · Zbl 0678.49003
[3] Anedda, C., Maximization and minimization in problems involving the bi-Laplacian, Ann. Mat. Pura Appl., 190 (2011), pp. 145-156, doi:10.1007/s10231-010-0142-5. · Zbl 1209.35054
[4] Anedda, C., Cuccu, F., and Porru, G., Minimization of the first eigenvalue in problems involving the bi-Laplacian, Rev. Mat. Teor. Apl., 16 (2009), pp. 127-136.
[5] Bandle, C., Isoperimetric Inequalities and Applications, , Pitman, London, 1980, https://books.google.at/books?id=I0vvAAAAMAAJ. · Zbl 0436.35063
[6] Berchio, E., Gazzola, F., and Mitidieri, E., Positivity preserving property for a class of biharmonic elliptic problems, J. Differential Equations, 229 (2006), pp. 1-23, doi:10.1016/j.jde.2006.04.003. · Zbl 1142.35016
[7] Berchio, E., Buoso, D., Gazzola, F., and Zucco, D., A minimaxmax problem for improving the torsional stability of rectangular plates, J. Optim. Theory Appl., 177 (2018), pp. 64-92. · Zbl 1392.35119
[8] Berchio, E. and Falocchi, A., About symmetry in partially hinged composite plates, Appl. Math. Optim., 84 (2021), pp. 2645-2669, doi:10.1007/s00245-020-09722-y. · Zbl 1479.35315
[9] Bucur, D. and Gazzola, F., The first biharmonic Steklov eigenvalue: Positivity preserving and shape optimization, Milan J. Math., 79 (2011), pp. 247-258, doi:10.1007/s00032-011-0143-x. · Zbl 1229.35156
[10] Buoso, D. and Freitas, P., Extremal eigenvalues of the Dirichlet biharmonic operator on rectangles, Proc. Amer. Math. Soc., 148 (2020), pp. 1109-1120, doi:10.1090/proc/14792. · Zbl 1439.35156
[11] Buoso, D. and Lamberti, P. D., Shape deformation for vibrating hinged plates, Math. Methods Appl. Sci., 37 (2013), pp. 237-244, doi:10.1002/mma.2858. · Zbl 1282.35371
[12] Buoso, D. and Provenzano, L., A few shape optimization results for a biharmonic steklov problem, J. Differential Equations, 259 (2015), pp. 1778-1818, doi:10.1016/j.jde.2015.03.013. · Zbl 1319.35256
[13] Buoso, D., Analyticity and criticality results for the eigenvalues of the biharmonic operator, in Geometric Properties for Parabolic and Elliptic PDE’s, , vol. 176, Springer, [Cham], 2016, pp. 65-58. · Zbl 1349.35254
[14] Buoso, D., Analyticity and criticality results for the eigenvalues of the biharmonic operator Geometric properties for parabolic and elliptic PDE’s, in Geometric Properties for Parabolic and Elliptic PDE’s, , Springer, Cham, 2016, pp. 65-58. · Zbl 1349.35254
[15] Casado-Díaz, J., A characterization result for the existence of a two-phase material minimizing the first eigenvalue, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), pp. 1215—1226, doi:10.1016/j.anihpc.2016.09.006. · Zbl 1379.49044
[16] Chanillo, S., Grieser, D., Imai, M., Kurata, K., and Ohnishi, I., Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes, Comm. Math. Phys., 214 (2000), pp. 315-337, doi:10.1007/pl00005534. · Zbl 0972.49030
[17] Colasuonno, F. and Vecchi, E., Symmetry in the composite plate problem, Commun. Contemp. Math., 21 (2019), 1850019, doi:10.1142/s0219199718500190. · Zbl 1416.35102
[18] Colbois, B. and Provenzano, L., Conformal upper bounds for the eigenvalues of the \(p\)-Laplacian, J. Lond. Math. Soc., 104 (2021), pp. 2128-2147. · Zbl 1507.35122
[19] Colbois, B. and Provenzano, L., Eigenvalues of elliptic operators with density, Calc. Var. Partial Differential Equations, 57 (2018), 36. · Zbl 1388.35136
[20] Colbois, B. and Provenzano, L., Neumann eigenvalues of the biharmonic operator on domains: Geometric bounds and related results, J. Geom. Anal., 32 (2022), pp. 58. · Zbl 1491.35298
[21] Conca, C., Mahadevan, R., and Sanz, L., An extremal eigenvalue problem for a two-phase conductor in a ball, Appl. Math. Optim., 60 (2008), pp. 173-184, doi:10.1007/s00245-008-9061-x. · Zbl 1179.49052
[22] Cox, S. and Lipton, R., Extremal eigenvalue problems for two-phase conductors, Arch. Ration. Mech. Anal., 136 (1996), pp. 101-117. · Zbl 0914.49011
[23] Henrot, A. and Pierre, M., Shape Variation and Optimization, European Mathematical Society, 2018, doi:10.4171/178. · Zbl 1392.49001
[24] Jadamba, B., Kahler, R., Khan, A. A., Raciti, F., and Winkler, B., Identification of flexural rigidity in a Kirchhoff plates model using a convex objective and continuous Newton method, Math. Probl. Eng., 2015 (2015), pp. 1-11, doi:10.1155/2015/290301. · Zbl 1394.74100
[25] Kang, D. and Kao, C.-Y., Minimization of inhomogeneous biharmonic eigenvalue problems, Appl. Math. Model., 51 (2017), pp. 587-604, doi:10.1016/j.apm.2017.07.015. · Zbl 1480.49046
[26] Kao, C.-Y. and Mohammadi, S. A., Tuning the total displacement of membranes, Commun. Nonlinear Sci. Numer. Simul., 96 (2021), 105706, doi:10.1016/j.cnsns.2021.105706. · Zbl 1459.49002
[27] Kato, T., Perturbation Theory for Linear Operators, Springer, Berlin, 1995, doi:10.1007/978-3-642-66282-9. · Zbl 0836.47009
[28] Kawohl, B., Rearrangements and Convexity of Level Sets in PDE, Springer, Berlin, 1985, doi:10.1007/bfb0075060. · Zbl 0593.35002
[29] Kesavan, S., Symmetrization and Applications, World Scientific, River Edge, NJ, 2006, doi:10.1142/6071. · Zbl 1110.35002
[30] Lamberti, P. D. and Provenzano, L., A maximum principle in spectral optimization problems for elliptic operators subject to mass density perturbations, Eurasian Math. J., 4 (2013), pp. 70-83. · Zbl 1327.35272
[31] Laurain, A., Global minimizer of the ground state for two phase conductors in low contrast regime, ESAIM Control Optim. Calc. Var., 20 (2014), pp. 362-388, doi:10.1051/cocv/2013067. · Zbl 1287.49047
[32] Lieb, E. H. and Loss, M., Analysis, 2nd ed., , AMS, Providence, RI, 2001. · Zbl 0966.26002
[33] Manservisi, S. and Gunzburger, M., A variational inequality formulation of an inverse elasticity problem, Appl. Numer. Math., 34 (2000), pp. 99-126, doi:10.1016/s0168-9274(99)00042-2. · Zbl 0966.74026
[34] Marinov, T. T. and Marinova, R. S., An inverse problem for estimation of bending stiffness in Kirchhoff-Love plates, Comput. Math. Appl., 65 (2013), pp. 512-519, doi:10.1016/j.camwa.2012.07.008. · Zbl 1319.74010
[35] Mazari, I., Nadin, G., and Privat, Y., Shape optimization of a weighted two-phase dirichlet eigenvalue, Arch. Rational. Mech. Anal.243 (2022), pp. 95-137, doi:10.1007/s00205-021-01726-4. · Zbl 1480.49047
[36] Migliaccio, L., Sur une condition de Hardy, Littlewood, Polya, C. R. Hebd. Séanc. Acad. Sci. Paris, 297 (1983), pp. 25-28. · Zbl 0553.46022
[37] Murat, F. and Tartar, L., Calculus of variations and homogenization, in Topics in the Mathematical Modelling of Composite Materials, Birkhäuser, Boston, 1997, pp. 139-173. · Zbl 0939.35019
[38] Privat, Y., Trélat, E., and Zuazua, E., Complexity and regularity of maximal energy domains for the wave equation with fixed initial data, Discrete Contin. Dyn. Syst. Ser. B, 35 (2015), pp. 6133-6153, doi:10.3934/dcds.2015.35.6133. · Zbl 1332.93069
[39] Talenti, G., Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa Cl. Sci., 3 (1976), pp. 697-718, http://www.numdam.org/item/ASNSP_1976_4_3_4_697_0. · Zbl 0341.35031
[40] Visintin, A., Strong convergence results related to strict convexity, Comm. Partial Differential Equations, 9 (1984), pp. 439-466, doi:10.1080/03605308408820337. · Zbl 0545.49019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.