×

A robust stochastic possibilistic programming model for dynamic supply chain network design with pricing and technology selection decisions. (English) Zbl 07759810

MSC:

90Bxx Operations research and management science
Full Text: DOI

References:

[1] Ivanov, D., An adaptive framework for aligning (re)planning decisions on supply chain strategy, design, tactics, and operations, Int. J. Prod. Res., 48, 13, 3999-4017 (2010) · Zbl 1197.90257 · doi:10.1080/00207540902893417
[2] Melo, MT; Nickel, S.; Saldanha-Da-Gama, F., A tabu search heuristic for redesigning a multi-echelon supply chain network over a planning horizon, Int. J. Prod. Econ., 136, 1, 218-230 (2012) · doi:10.1016/j.ijpe.2011.11.022
[3] Melo, MT; Nickel, S.; Saldanha-da-Gama, F., Dynamic multi-commodity capacitated facility location: a mathematical modeling framework for strategic supply chain planning, Comput. Oper. Res., 33, 1, 181-208 (2006) · Zbl 1077.90006 · doi:10.1016/j.cor.2004.07.005
[4] Correia, I.; Melo, T., A multi-period facility location problem with modular capacity adjustments and flexible demand fulfillment, Comput. Ind. Eng., 110, 307-321 (2017) · doi:10.1016/j.cie.2017.06.003
[5] Correia, I.; Melo, T.; Saldanha-Da-Gama, F., Comparing classical performance measures for a multi-period, two-echelon supply chain network design problem with sizing decisions, Comput. Ind. Eng., 64, 1, 366-380 (2013) · doi:10.1016/j.cie.2012.11.001
[6] Cortinhal, MJ; Lopes, MJ; Melo, MT, Dynamic design and re-design of multi-echelon, multi-product logistics networks with outsourcing opportunities: a computational study, Comput. Ind. Eng., 90, 118-131 (2015) · doi:10.1016/j.cie.2015.08.019
[7] Guan, Z.; Mou, Y.; Sun, M., Hybrid robust and stochastic optimization for a capital-constrained fresh product supply chain integrating risk-aversion behavior and financial strategies, Comput. Ind. Eng. (2022) · doi:10.1016/j.cie.2022.108224
[8] Guan, Z., Tao, J., Sun, M.: Integrated optimization of resilient supply chain network design and operations under disruption risks. In: Khojasteh, J., Xu, H., Zolfaghari, S. (eds.) Supply Chain Risk Mitigation: Strategies, Methods and Applications, p. Forthcoming. Springer (2022)
[9] Melo, MT; Nickel, S.; Saldanha-da-Gama, F., Facility location and supply chain management—a review, Eur. J. Oper. Res., 196, 2, 401-412 (2009) · Zbl 1163.90341 · doi:10.1016/j.ejor.2008.05.007
[10] Badri, H.; Bashiri, M.; Hejazi, TH, Integrated strategic and tactical planning in a supply chain network design with a heuristic solution method, Comput. Oper. Res., 40, 4, 1143-1154 (2013) · Zbl 1349.90274 · doi:10.1016/j.cor.2012.11.005
[11] Martínez-Costa, C.; Mas-Machuca, M.; Benedito, E.; Corominas, A., A review of mathematical programming models for strategic capacity planning in manufacturing, Int. J. Prod. Econ., 153, 66-85 (2014) · doi:10.1016/j.ijpe.2014.03.011
[12] Jakubovskis, A., Flexible production resources and capacity utilization rates: a robust optimization perspective, Int. J. Prod. Econ., 189, 77-85 (2017) · doi:10.1016/j.ijpe.2017.03.011
[13] Verter, V.; Dasci, A., The plant location and fexible technology acquisition problem, Eur. J. Oper. Res., 136, 366-382 (2002) · Zbl 1091.90530 · doi:10.1016/S0377-2217(01)00023-6
[14] Fattahi, M.; Mahootchi, M.; Govindan, K.; Moattar Husseini, SM, Dynamic supply chain network design with capacity planning and multi-period pricing, Transp. Res. Part E: Log. Transp. Rev., 81, 169-202 (2015) · doi:10.1016/j.tre.2015.06.007
[15] Bish, EK; Wang, Q., Optimal investment strategies for flexible resources, considering pricing and correlated demands, Oper. Res., 52, 6, 954-964 (2004) · Zbl 1165.91428 · doi:10.1287/opre.1040.0138
[16] Pishvaee, MS; Razmi, J.; Torabi, SA, Robust possibilistic programming for socially responsible supply chain network design: a new approach, Fuzzy Sets Syst., 206, 1-20 (2012) · Zbl 1252.90009 · doi:10.1016/j.fss.2012.04.010
[17] Tang, CS, Perspectives in supply chain risk management, Int. J. Prod. Econ., 103, 2, 451-488 (2006) · doi:10.1016/j.ijpe.2005.12.006
[18] Li, X.; Lu, S.; Li, Z.; Wang, Y.; Zhu, L., Modeling and optimization of bioethanol production planning under hybrid uncertainty: a heuristic multi-stage stochastic programming approach, Energy, 245, 123285 (2022) · doi:10.1016/j.energy.2022.123285
[19] Ahmadi, E.; Masel, D.; Hostetler, S., A robust stochastic decision-making model for inventory allocation of surgical supplies to reduce logistics costs in hospitals: a case study, Oper. Res. Health Care, 20, 33-44 (2019) · doi:10.1016/J.ORHC.2018.09.001
[20] Ahmadi, E.; Masel, DT; Hostetler, S.; Maihami, R.; Ghalehkhondabi, I., A centralized stochastic inventory control model for perishable products considering age-dependent purchase price and lead time, TOP, 28, 1, 231-269 (2020) · Zbl 1435.90003 · doi:10.1007/s11750-019-00533-1
[21] Ahmadi, E.; Mosadegh, H.; Maihami, R.; Ghalehkhondabi, I.; Sun, M.; Süer, GA, Intelligent inventory management approaches for perishable pharmaceutical products in a healthcare supply chain, Comput. Oper. Res., 147, 105968 (2022) · Zbl 1520.90004 · doi:10.1016/j.cor.2022.105968
[22] Farrokh, M.; Azar, A.; Jandaghi, G.; Ahmadi, E., A novel robust fuzzy stochastic programming for closed loop supply chain network design under hybrid uncertainty, Fuzzy Sets Syst., 341, 69-91 (2018) · Zbl 1397.90057 · doi:10.1016/j.fss.2017.03.019
[23] Guo, Y.; Shi, Q.; Guo, C.; Li, J.; You, Z.; Wang, Y., Designing a sustainable-remanufacturing closed-loop supply chain under hybrid uncertainty: cross-efficiency sorting multi-objective optimization, Comput. Ind. Eng., 172, PA, 108639 (2022) · doi:10.1016/j.cie.2022.108639
[24] Keyvanshokooh, E.; Ryan, SM; Kabir, E., Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition, Eur. J. Oper. Res., 249, 1, 76-92 (2016) · Zbl 1346.90136 · doi:10.1016/j.ejor.2015.08.028
[25] Bassamboo, A.; Randhawa, RS; Van Mieghem, JA, Optimal flexibility configurations in newsvendor networks: going beyond chaining and pairing, Manage. Sci., 56, 8, 1285-1303 (2010) · Zbl 1232.90018 · doi:10.1287/mnsc.1100.1184
[26] Bose, D.; Chatterjee, AK; Barman, S., Towards dominant flexibility configurations in strategic capacity planning under demand uncertainty, Opsearch, 53, 3, 604-619 (2016) · Zbl 1360.90116 · doi:10.1007/s12597-015-0247-0
[27] Eppen, GD; Martin, RK; Schrage, L., OR practice—a scenario approach to capacity planning, Oper. Res., 37, 4, 517-527 (1989) · doi:10.1287/opre.37.4.517
[28] Fine, CH; Freund, RM, Optimal investment in product-flexible manufacturing capacity, Manage. Sci., 36, 4, 449-466 (1990) · Zbl 0699.90044 · doi:10.1287/mnsc.36.4.449
[29] Verter, V., An integrated model for facility location and technology acquisition, Comput. Oper. Res., 29, 583-592 (2002) · Zbl 0995.90064 · doi:10.1016/S0305-0548(00)00057-5
[30] Ahmed, S.; Sahinidis, NV, Selection, acquisition, and allocation of manufacturing technology in a multi-period environment, Eur. J. Oper. Res., 189, 3, 807-821 (2008) · Zbl 1146.90382 · doi:10.1016/j.ejor.2006.11.046
[31] Chen, Z-L; Li, S.; Tirupati, D., A scenario-based stochastic programming approach for technology and capacity planning, Comput. Oper. Res., 29, 7, 781-806 (2002) · Zbl 0995.90053 · doi:10.1016/S0305-0548(00)00076-9
[32] Li, S.; Tirupati, D., Dynamic capacity expansion problem with multiple products: Technology selection and timing of capacity additions, Oper. Res., 42, 5, 958-976 (1994) · Zbl 0816.90073 · doi:10.1287/opre.42.5.958
[33] Lim, S.; Kim, Y., An integrated approach to dynamic plant location and capacity planning, J. Oper. Res. Soc., 50, 12, 1205-1216 (2014) · Zbl 1054.90591 · doi:10.1057/palgrave.jors.2600849
[34] Ji, S.; Tang, J.; Sun, M.; Luo, R., Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences, J. Ind. Manag. Optim., 18, 3, 1949-1977 (2022) · Zbl 1499.65219 · doi:10.3934/jimo.2021051
[35] Xin, C.; Zhou, Y.; Sun, M.; Chen, X., Strategic inventory and dynamic pricing for a two-echelon green product supply chain, J. Clean. Prod., 363 (2022) · doi:10.1016/j.jclepro.2022.132422
[36] Govindan, K.; Gholizadeh, H., Robust network design for sustainable-resilient reverse logistics network using big data: a case study of end-of-life vehicles, Transp. Res. Part E: Log. Transp. Rev., 149, 102279 (2021) · doi:10.1016/j.tre.2021.102279
[37] Papageorgiou, LG, Supply chain optimisation for the process industries: advances and opportunities, Comput. Chem. Eng., 33, 12, 1931-1938 (2009) · doi:10.1016/j.compchemeng.2009.06.014
[38] Özkir, V.; Başligil, H., Multi-objective optimization of closed-loop supply chains in uncertain environment, J. Clean. Prod., 41, 114-125 (2013) · doi:10.1016/j.jclepro.2012.10.013
[39] Gholami, RA; Sandal, LK; Ubøe, J., A solution algorithm for multi-period bi-level channel optimization with dynamic price-dependent stochastic demand, Omega, 102 (2021) · doi:10.1016/j.omega.2020.102297
[40] Raza, SA; Abdullakutty, FC; Rathinam, S.; Govindaluri, SM, Multi-objective framework for process mean selection and price differentiation with leakage effects under price-dependent stochastic demand, Comput. Ind. Eng., 127, 698-708 (2019) · doi:10.1016/j.cie.2018.11.010
[41] Shah, NH; Soni, H., Continuous review inventory model for fuzzy price dependent demand, Int. J. Model. Oper. Manag., 1, 3, 209-222 (2011)
[42] Yu, Y.; Zhu, J.; Wang, C., A newsvendor model with fuzzy price-dependent demand, Appl. Math. Model., 37, 5, 2644-2661 (2013) · Zbl 1351.90020 · doi:10.1016/j.apm.2012.06.008
[43] Govindan, K.; Darbari, JD; Agarwal, V.; Jha, PC, Fuzzy multi-objective approach for optimal selection of suppliers and transportation decisions in an eco-efficient closed loop supply chain network, J. Clean. Prod., 165, 1598-1619 (2017) · doi:10.1016/j.jclepro.2017.06.180
[44] Govindan, K.; Fattahi, M.; Keyvanshokooh, E., Supply chain network design under uncertainty: a comprehensive review and future research directions, Eur. J. Oper. Res. (2017) · Zbl 1380.90041 · doi:10.1016/j.ejor.2017.04.009
[45] Mulvey, JM; Vanderbei, MJ; Zenios, SA, Robust optimization of large scale systems, Oper. Res., 43, 2, 264-281 (1995) · Zbl 0832.90084 · doi:10.1287/opre.43.2.264
[46] Ghahremani-Nahr, J.; Kian, R.; Sabet, E., A robust fuzzy mathematical programming model for the closed-loop supply chain network design and a whale optimization solution algorithm, Expert Syst. Appl., 116, 454-471 (2019) · doi:10.1016/j.eswa.2018.09.027
[47] Ahmadi-Javid, A.; Hoseinpour, P., Incorporating location, inventory and price decisions into a supply chain distribution network design problem, Comput. Oper. Res., 56, 110-119 (2015) · Zbl 1348.90058 · doi:10.1016/j.cor.2014.07.014
[48] Ghomi-Avili, M.; Naeini, SGJ; Tavakkoli-Moghaddam, R.; Jabbarzadeh, A., A fuzzy pricing model for a green competitive closed-loop supply chain network design in the presence of disruptions, J. Clean. Prod., 188, 425-442 (2018) · doi:10.1016/j.jclepro.2018.03.273
[49] Duc, TTH; Loi, NT; Buddhakulsomsiri, J., Buyback contract in a risk-averse supply chain with a return policy and price dependent demand, Int. J. Log. Syst. Manag., 30, 3, 298-329 (2018)
[50] Ullah, M.; Khan, I.; Sarkar, B., Dynamic pricing in a multi-period newsvendor under stochastic price-dependent demand, Mathematics, 7, 6, 520 (2019) · doi:10.3390/math7060520
[51] Ramezani, M.; Kimiagari, AM; Karimi, B.; Hejazi, TH, Closed-loop supply chain network design under a fuzzy environment, Knowl.-Based Syst., 59, 108-120 (2014) · doi:10.1016/j.knosys.2014.01.016
[52] Vijai, JP, Production network, technology choice, capacity investment and inventory sourcing decisions: operational hedging under demand uncertainty, Opsearch, 58, 4, 1164-1191 (2021) · Zbl 07549120 · doi:10.1007/s12597-021-00511-x
[53] Boyabatlı, O.; Toktay, LB, Stochastic capacity investment and flexible vs. dedicated technology choice in imperfect capital markets, Manag. Sci., 57, 12, 2163-2179 (2011) · doi:10.1287/mnsc.1110.1395
[54] Nagaraju, D.; Kumar, BK; Narayanan, S., On the optimality of inventory and shipment policies in a two-level supply chain under quadratic price dependent demand, Int. J. Log. Syst. Manag., 35, 4, 486-510 (2020)
[55] Caliskan-Demirag, O.; Chen, YF; Li, J., Channel coordination under fairness concerns and nonlinear demand, Eur. J. Oper. Res., 207, 3, 1321-1326 (2010) · Zbl 1206.90007 · doi:10.1016/j.ejor.2010.07.017
[56] Xu, M.; Qi, X.; Yu, G.; Zhang, H.; Gao, C., The demand disruption management problem for a supply chain system with nonlinear demand functions, J. Syst. Sci. Syst. Eng., 12, 1, 82-97 (2003) · doi:10.1007/s11518-006-0122-x
[57] Phillips, RL, Pricing and Revenue Optimization (2005), Stanford University Press · doi:10.1515/9780804781640
[58] Ahmadi-Javid, A.; Ghandali, R., An efficient optimization procedure for designing a capacitated distribution network with price-sensitive demand, Optim. Eng., 15, 3, 801-817 (2014) · Zbl 1364.90036 · doi:10.1007/s11081-013-9245-3
[59] Talluri, KT; van Ryzin, G., The Theory and Practice of Revenue Management (2004), Boston: Kluwer Academic Publishers, Boston · Zbl 1083.90024 · doi:10.1007/b139000
[60] Dubois, D.; Prade, H., Systems of linear fuzzy constraints, Fuzzy Sets Syst., 3, 1, 37-48 (1980) · Zbl 0425.94029 · doi:10.1016/0165-0114(80)90004-4
[61] Beale, EML; Tomlin, JA, Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables, OR, 69, 447-754, 99 (1970)
[62] Babazadeh, R.; Razmi, J.; Pishvaee, MS; Rabbani, M., A sustainable second-generation biodiesel supply chain network design problem under risk, Omega (UK), 66, 258-277 (2017) · doi:10.1016/j.omega.2015.12.010
[63] Tomlin, JA, Special ordered sets and an application to gas supply operation planning, Math. Program., 42, 69-84 (1988) · doi:10.1007/BF01589393
[64] Tsai, W-H; Chang, Y-C; Lin, S-J; Chen, H-C; Chu, P-Y, A green approach to the weight reduction of aircraft cabins, J. Air Transp. Manag., 40, 65-77 (2014) · doi:10.1016/j.jairtraman.2014.06.004
[65] Ben-Tal, A.; El Ghaoui, L.; Nemirovski, A., Robust Optimization (2009), Princeton University Press · Zbl 1221.90001 · doi:10.1515/9781400831050
[66] Liu, B.; Iwamura, K., Chance constrained programming with fuzzy parameters, Fuzzy Sets Syst., 94, 2, 227-237 (1998) · Zbl 0923.90141 · doi:10.1016/S0165-0114(96)00236-9
[67] Hasani, A.; Khosrojerdi, A., Robust global supply chain network design under disruption and uncertainty considering resilience strategies: a parallel memetic algorithm for a real-life case study, Transp. Res. Part E: Log. Transp. Rev., 87, 20-52 (2016) · doi:10.1016/j.tre.2015.12.009
[68] Ghavamifar, A.; Makui, A.; Taleizadeh, AA, Designing a resilient competitive supply chain network under disruption risks: a real-world application, Transp. Res. Part E: Log. Transp. Rev., 115, 87-109 (2018) · doi:10.1016/j.tre.2018.04.014
[69] Hanjoul, P.; Hansen, P.; Peeters, D.; Thisse, J-F, Uncapacitated plant location under alternative spatial price policies, Manage. Sci., 36, 1, 41-57 (1990) · Zbl 0694.90045 · doi:10.1287/mnsc.36.1.41
[70] Hansen, P.; Peeters, D.; Thisse, J., Facility location under zone pricing, J. Reg. Sci., 37, 1, 1-22 (1997) · doi:10.1111/0022-4146.00040
[71] Zeballos, LJ; Méndez, CA; Barbosa-Povoa, AP; Novais, AQ, Multi-period design and planning of closed-loop supply chains with uncertain supply and demand, Comput. Chem. Eng., 66, 151-164 (2014) · doi:10.1016/j.compchemeng.2014.02.027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.