×

Evolving improved sampling protocols for dose-response modelling using genetic algorithms with a profile-likelihood metric. (English) Zbl 07850294

Summary: Practical limitations of quality and quantity of data can limit the precision of parameter identification in mathematical models. Model-based experimental design approaches have been developed to minimise parameter uncertainty, but the majority of these approaches have relied on first-order approximations of model sensitivity at a local point in parameter space. Practical identifiability approaches such as profile-likelihood have shown potential for quantifying parameter uncertainty beyond linear approximations. This research presents a genetic algorithm approach to optimise sample timing across various parameterisations of a demonstrative PK-PD model with the goal of aiding experimental design. The optimisation relies on a chosen metric of parameter uncertainty that is based on the profile-likelihood method. Additionally, the approach considers cases where multiple parameter scenarios may require simultaneous optimisation. The genetic algorithm approach was able to locate near-optimal sampling protocols for a wide range of sample number (n = 3–20), and it reduced the parameter variance metric by 33–37% on average. The profile-likelihood metric also correlated well with an existing Monte Carlo-based metric (with a worst-case r > 0.89), while reducing computational cost by an order of magnitude. The combination of the new profile-likelihood metric and the genetic algorithm demonstrate the feasibility of considering the nonlinear nature of models in optimal experimental design at a reasonable computational cost. The outputs of such a process could allow for experimenters to either improve parameter certainty given a fixed number of samples, or reduce sample quantity while retaining the same level of parameter certainty.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
68W50 Evolutionary algorithms, genetic algorithms (computational aspects)
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)

References:

[1] Broudiscou, A.; Leardi, R.; Phan-Tan-Luu, R., Genetic algorithm as a tool for selection of D-optimal design, Chemom Intell Lab Syst, 35, 1, 105-116, 1996 · doi:10.1016/S0169-7439(96)00028-7
[2] Chen, R-B; Chang, S-P; Wang, W.; Tung, H-C; Wong, WK, Minimax optimal designs via particle swarm optimization methods, Stat Comput, 25, 5, 975-988, 2015 · Zbl 1332.62265 · doi:10.1007/s11222-014-9466-0
[3] DiStefano, JJ 3rd, Optimized blood sampling protocols and sequential design of kinetic experiments, Am J Physiol, 240, 5, R259-265, 1981 · doi:10.1152/ajpregu.1981.240.5.R259
[4] Docherty, P.; Chase, JG; Lotz, T.; Desaive, T., A graphical method for practical and informative identifiability analyses of physiological models: a case study of insulin kinetics and sensitivity, Biomed Eng Online, 2011 · doi:10.1186/1475-925X-10-39
[5] Franceschini, G.; Macchietto, S., Model-based design of experiments for parameter precision: State of the art, Chem Eng Sci, 63, 19, 4846-4872, 2008 · doi:10.1016/j.ces.2007.11.034
[6] Galvanin, F.; Ballan, CC; Barolo, M.; Bezzo, F., A general model-based design of experiments approach to achieve practical identifiability of pharmacokinetic and pharmacodynamic models, J Pharmacokinet Pharmacodyn, 40, 4, 451-467, 2013 · doi:10.1007/s10928-013-9321-5
[7] Heredia-Langner, A.; Montgomery, DC; Carlyle, WM; Borror, CM, Model-robust optimal designs: a genetic algorithm approach, J Qual Technol, 36, 3, 263-279, 2004 · doi:10.1080/00224065.2004.11980273
[8] Hines, KE; Middendorf, TR; Aldrich, RW, Determination of parameter identifiability in nonlinear biophysical models: A Bayesian approach, J Gen Physiol, 143, 3, 401-416, 2014 · doi:10.1085/jgp.201311116
[9] Jacquez, JA; Greif, P., Numerical parameter identifiability and estimability: integrating identifiability, estimability, and optimal sampling design, Math Biosci, 77, 1, 201-227, 1985 · Zbl 0581.93017 · doi:10.1016/0025-5564(85)90098-7
[10] Krausch, N.; Barz, T.; Sawatzki, A.; Gruber, M.; Kamel, S.; Neubauer, P.; Cruz Bournazou, MN, Monte Carlo simulations for the analysis of non-linear parameter confidence intervals in optimal experimental design, Front Bioeng Biotechnol, 2019 · doi:10.3389/fbioe.2019.00122
[11] Lam, N.; Murray, R.; Docherty, PD; Te Morenga, L.; Chase, JG, The effects of additional local-mixing compartments in the DISST model-based assessment of insulin sensitivity, J Diabet Sci Technol, 2021 · doi:10.1177/19322968211021602
[12] Lam, NN; Docherty, PD; Murray, R., Practical identifiability of parametrised models: a review of benefits and limitations of various approaches, Math Comput Simul, 199, 202-216, 2022 · Zbl 1540.65008 · doi:10.1016/j.matcom.2022.03.020
[13] Lin, CD; Anderson-Cook, CM; Hamada, MS; Moore, LM; Sitter, RR, Using genetic algorithms to design experiments: a review, Qual Reliab Eng Int, 31, 2, 155-167, 2015 · doi:10.1002/qre.1591
[14] Michaelis, L.; Menten, ML, Die Kinetik Der Invertinwirkung, Biochem Z, 49, 333-369, 1913
[15] Mori, F.; DiStefano, J., Optimal nonuniform sampling interval and test-input design for identification of physiological systems from very limited data, IEEE Trans Autom Control, 24, 6, 893-900, 1979 · Zbl 0416.93047 · doi:10.1109/TAC.1979.1102175
[16] Muñoz-Tamayo, R.; Tedeschi, LO, ASAS-NANP symposium: mathematical modeling in animal nutrition: the power of identifiability analysis for dynamic modeling in animal science: a practitioner approach, J Anim Sci, 2023 · doi:10.1093/jas/skad320
[17] Raue, A.; Becker, V.; Klingmüller, U.; Timmer, J., Identifiability and observability analysis for experimental design in nonlinear dynamical models, Chaos Interdiscip J Nonlinear Sci, 20, 4, 045105, 2010 · Zbl 1311.92066 · doi:10.1063/1.3528102
[18] Raue, A.; Kreutz, C.; Maiwald, T.; Bachmann, J.; Schilling, M.; Klingmüller, U.; Timmer, J., Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood, Bioinformatics, 25, 15, 1923-1929, 2009 · doi:10.1093/bioinformatics/btp358
[19] Rothman, KJ; Greenland, S., Planning study size based on precision rather than power, Epidemiology, 29, 5, 599-603, 2018 · doi:10.1097/ede.0000000000000876
[20] Sher, A.; Niederer, SA; Mirams, GR; Kirpichnikova, A.; Allen, R.; Pathmanathan, P.; Gavaghan, DJ; van der Graaf, PH; Noble, D., A quantitative systems pharmacology perspective on the importance of parameter identifiability, Bull Math Biol, 84, 3, 39, 2022 · doi:10.1007/s11538-021-00982-5
[21] Simpson, MJ; Baker, RE; Vittadello, ST; Maclaren, OJ, Practical parameter identifiability for spatio-temporal models of cell invasion, J R Soc Interface, 17, 164, 20200055, 2020 · doi:10.1098/rsif.2020.0055
[22] Thomaseth, K.; Cobelli, C., Generalized sensitivity functions in physiological system identification, Ann Biomed Eng, 27, 5, 607-616, 1999 · doi:10.1114/1.207
[23] Villaverde, AF; Banga, JR, Reverse engineering and identification in systems biology: strategies, perspectives and challenges, J R Soc Interface, 11, 91, 20130505, 2014 · doi:10.1098/rsif.2013.0505
[24] Villaverde, AF; Raimundez, E.; Hasenauer, J.; Banga, JR, Assessment of Prediction uncertainty quantification methods in systems biology, IEEE/ACM Trans Comput Biol Bioinform, 20, 3, 1725-1736, 2023 · doi:10.1109/tcbb.2022.3213914
[25] Walter, E.; Pronzato, L., Qualitative and quantitative experiment design for phenomenological models—A survey, Automatica, 26, 2, 195-213, 1990 · Zbl 0703.62072 · doi:10.1016/0005-1098(90)90116-Y
[26] Wieland, F-G; Hauber, AL; Rosenblatt, M.; Tönsing, C.; Timmer, J., On structural and practical identifiability, Curr Opin Syst Biol, 25, 60-69, 2021 · doi:10.1016/j.coisb.2021.03.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.