×

An efficient finite element method and error analysis for eigenvalue problem of Schrödinger equation with an inverse square potential on spherical domain. (English) Zbl 1486.65236

Summary: We provide an effective finite element method to solve the Schrödinger eigenvalue problem with an inverse potential on a spherical domain. To overcome the difficulties caused by the singularities of coefficients, we introduce spherical coordinate transformation and transfer the singularities from the interior of the domain to its boundary. Then by using orthogonal properties of spherical harmonic functions and variable separation technique we transform the original problem into a series of one-dimensional eigenvalue problems. We further introduce some suitable Sobolev spaces and derive the weak form and an efficient discrete scheme. Combining with the spectral theory of Babuška and Osborn for self-adjoint positive definite eigenvalue problems, we obtain error estimates of approximation eigenvalues and eigenvectors. Finally, we provide some numerical examples to show the efficiency and accuracy of the algorithm.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
35J60 Nonlinear elliptic equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)

References:

[1] Felli, V.; Marchini, E.; Terracini, S., On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity, Discrete Contin. Dyn. Syst., 21, 91-119 (2008) · Zbl 1141.35362 · doi:10.3934/dcds.2008.21.91
[2] Fournais, S.; Hoffmann-Ostenhof, M.; Hoffmann-Ostenhof, T.; Østergaard Sørensen, T., Analytic structure of solutions to multiconfiguration equations, J. Phys. A, 42 (2009) · Zbl 1181.35282 · doi:10.1088/1751-8113/42/31/315208
[3] Moroz, S.; Schmidt, R., Nonrelativistic inverse square potential, scale anomaly, and complex extension, Ann. Phys., 325, 491-513 (2010) · Zbl 1193.81024 · doi:10.1016/j.aop.2009.10.002
[4] Wu, H.; Sprung, D. W.L., Inverse-square potential and the quantum vortex, Phys. Rev. A, 49, 4305-4311 (1994) · doi:10.1103/PhysRevA.49.4305
[5] Case, K. M., Singular potentials, Phys. Rev., 80, 797-806 (1950) · Zbl 0039.22403 · doi:10.1103/PhysRev.80.797
[6] Frank, W. M.; Land, D. J.; Spector, R. M., Singular potentials, Rev. Mod. Phys., 43, 36-98 (1971) · doi:10.1103/RevModPhys.43.36
[7] Cao, D.; Han, P., Solutions to critical elliptic equations with multi-singular inverse square potentials, J. Differ. Equ., 224, 332-372 (2006) · Zbl 1198.35086 · doi:10.1016/j.jde.2005.07.010
[8] Felli, V.; Marchini, E. M.; Terracini, S., On Schrödinger operators with multipolar inverse-square potentials, J. Differ. Equ., 250, 265-316 (2007) · Zbl 1222.35074
[9] Felli, V.; Terracini, S., Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity, Commun. Partial Differ. Equ., 31, 469-495 (2006) · Zbl 1206.35104 · doi:10.1080/03605300500394439
[10] Kalf, H.; Schmincke, U. W.; Walter, J.; Wüst, R., On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials, Spectral Theory and Differential Equations, 182-226 (1975), Berlin: Springer, Berlin · Zbl 0311.47021
[11] Li, H.; Ovall, J. S., A posteriori eigenvalue error estimation for the Schrödinger operator with the inverse square potential, Discrete Contin. Dyn. Syst., Ser. B, 20, 1377-1391 (2015) · Zbl 1334.65190 · doi:10.3934/dcdsb.2015.20.1377
[12] Ghanbari, B.; Atangana, A., Some new edge detecting techniques based on fractional derivatives with non-local and non-singular kernels, Adv. Differ. Equ., 2020 (2020) · doi:10.1186/s13662-020-02890-9
[13] Rahman, G.; Nisar, K. S.; Ghanbari, B.; Abdeljawad, T., On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals, Adv. Differ. Equ., 2020 (2020) · Zbl 1485.26047 · doi:10.1186/s13662-020-02830-7
[14] Ghanbari, B.; Nisar, K. S.; Ghanbari, B.; Aldhaifallah, M., Abundant solitary wave solutions to an extended nonlinear Schrödinger’s equation with conformable derivative using an efficient integration method, Adv. Differ. Equ., 2020 (2020) · Zbl 1485.35383 · doi:10.1186/s13662-020-02787-7
[15] Ghanbari, B.; Rada, L.; Chen, K., A restarted iterative homotopy analysis method for two nonlinear models from image processing, Int. J. Comput. Math., 91, 661-687 (2014) · Zbl 06330234 · doi:10.1080/00207160.2013.807340
[16] Khater, M. M.A.; Khater, C., Analytical, semi-analytical, and numerical solutions for the Cahn-Allen equation, Adv. Differ. Equ., 2020 (2020) · Zbl 1487.35409 · doi:10.1186/s13662-019-2475-8
[17] Khater, M. M.A.; Khater, C., On the numerical investigation of the interaction in plasma between frequency of waves, Results Phys., 18 (2020) · doi:10.1016/j.rinp.2020.103317
[18] Khater, M. M.A.; Khater, C., Abundant analytical and numerical solutions of the fractional microbiological densities model in bacteria cell as a result of diffusion mechanisms, Chaos Solitons Fractals, 136 (2020) · Zbl 1489.92102 · doi:10.1016/j.chaos.2020.109824
[19] Li, J.; Attia, R. A.M.; Khater, M. M.A.; Lu, D., The new structure of analytical and semi-analytical solutions of the longitudinal plasma wave equation in a magneto-electro-elastic circular rod, Mod. Phys. Lett. B, 12 (2020) · doi:10.1142/S0217984920501237
[20] Khater, M. M.A.; Attia, R. A.M.; Lu, D., Computational and numerical simulations for the nonlinear fractional Kolmogorov-Petrovskii-Piskunov (FKPP) equation, Phys. Scr., 95 (2020) · doi:10.1088/1402-4896/ab76f8
[21] Munusamy, K., Ravichandran, C., Nisar, K.S., Ghanbari, B.: Existence of solutions for some functional integro-differential equations with nonlocal conditions. Math. Methods Appl. Sci. 328 (2020). 10.1002/mma.6698 · Zbl 1463.45035
[22] Ghanbari, B.; Yusuf, A.; Inc, M.; Baleanu, D., The new exact solitary wave solutions and stability analysis for the \((2+1)\)-dimensional Zakharov-Kuznetsov equation, Adv. Differ. Equ., 2019 (2019) · Zbl 1458.35369 · doi:10.1186/s13662-019-1964-0
[23] Srivastava, H. M.; Günerhan, H.; Ghanbari, B., Exact traveling wave solutions for resonance nonlinear Schrödinger equation with intermodal dispersions and the Kerr law nonlinearity, Math. Methods Appl. Sci. (2020) · Zbl 1430.74070 · doi:10.1002/mma.5827
[24] Christiansen, P. L.; Muto, V.; Rionero, S., Solitary wave solutions to a system of Boussinesq-like equations, Chaos Solitons Fractals, 1, 45-50 (1992) · Zbl 0749.35042 · doi:10.1016/0960-0779(92)90046-P
[25] Khater, M. M.A.; Attia, R. A.M.; Abdel-Aty, A. H., Analytical and semi-analytical ample solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term, Results Phys., 12 (2020) · doi:10.1016/j.rinp.2020.103000
[26] Khater, M. M.A.; Attia, R. A.M.; Abdel-Aty, A. H., Analytical and numerical solutions for the current and voltage model on an electrical transmission line with time and distance, Phys. Scr., 95 (2020) · doi:10.1088/1402-4896/ab61dd
[27] Felli, V.; Ferrero, A.; Terracini, S., Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential, J. Eur. Math. Soc., 13, 119-174 (2011) · Zbl 1208.35070 · doi:10.4171/JEMS/246
[28] Hunsicker, E.; Li, H.; Nistor, V.; Ville, U., Analysis of Schrödinger operators with inverse square potentials I: regularity results in 3D, Bull. Math. Soc. Sci. Math. Roum., 55, 157-178 (2012) · Zbl 1299.35055
[29] Li, H.; Nistor, V., Analysis of a modified Schrödinger operator in 2D: regularity, index, and FEM, J. Comput. Appl. Math., 224, 320-338 (2009) · Zbl 1165.65079 · doi:10.1016/j.cam.2008.05.009
[30] Li, H.; Zhang, Z., Efficient spectral and spectral element methods for eigenvalue problems of Schrödinger equations with an inverse square potential, SIAM J. Sci. Comput., 39, 1, A114-A140 (2017) · Zbl 1355.65150 · doi:10.1137/16M1069596
[31] Li, H.; Ovall, J. S., A posteriori estimation of hierarchical type for the Schrödinger operator with the inverse square potential on graded meshes, Numer. Math., 128, 707-740 (2014) · Zbl 1320.65178 · doi:10.1007/s00211-014-0628-y
[32] Reddien, G. W., Finite-difference approximations to singular Sturm-Liouville eigenvalue problems, Math. Comput., 30, 278-282 (1976) · Zbl 0357.65059 · doi:10.1090/S0025-5718-1976-0403235-1
[33] Ma, L.; Shen, J.; Wang, L. L., Spectral approximation of time-harmonic Maxwell equations in three-dimensional exterior domains, Int. J. Numer. Anal. Model., 12, 1-18 (2015)
[34] Babuška, I.; Osborn, J., Eigenvalue Problems, 640-787 (1991), Amsterdam: Elsevier, Amsterdam · Zbl 0875.65087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.