×

Detecting bifurcations in dynamical systems with CROCKER plots. (English) Zbl 07878941

MSC:

37-XX Dynamical systems and ergodic theory
34-XX Ordinary differential equations

References:

[1] Topaz, C. M.; Ziegelmeier, L.; Halverson, T., Topological data analysis of biological aggregation models, PLoS One, 10, e0126383, 2015 · doi:10.1371/journal.pone.0126383
[2] Robinson, M., Topological Signal Processing, 2014, Springer · Zbl 1294.94001
[3] Robins, V.; Meiss, J. D.; Bradley, E.
[4] Kaczynski, T.; Mischaikow, K.; Mrozek, M., Computational Homology, 2004, Springer · Zbl 1039.55001
[5] Khasawneh, F. A. and Munch, E., “Utilizing topological data analysis for studying signals of time-delay systems,” in Time Delay Systems (Springer, 2017), pp. 93-106. · Zbl 1387.34112
[6] Garland, J.; Bradley, E.; Meiss, J. D., Exploring the topology of dynamical reconstructions, Physica D, 334, 49-59, 2016 · Zbl 1415.37103 · doi:10.1016/j.physd.2016.03.006
[7] Mittal, K.; Gupta, S., Topological characterization and early detection of bifurcations and chaos in complex systems using persistent homology, Chaos, 27, 051102, 2017 · Zbl 1388.37026 · doi:10.1063/1.4983840
[8] Dee Algar, S.; Corrêa, D. C.; Walker, D. M., On detecting dynamical regime change using a transformation cost metric between persistent homology diagrams, Chaos, 31, 123117, 2021 · Zbl 07868491 · doi:10.1063/5.0073247
[9] Güzel, I.; Kaygun, A.
[10] Karan, A.; Kaygun, A., Time series classification via topological data analysis, Expert Syst. Appl., 183, 115326, 2021 · doi:10.1016/j.eswa.2021.115326
[11] Maletić, S.; Zhao, Y.; Rajković, M., Persistent topological features of dynamical systems, Chaos, 26, 053105, 2016 · Zbl 1361.37068 · doi:10.1063/1.4949472
[12] Marchese, A.; Maroulas, V., Signal classification with a point process distance on the space of persistence diagrams, Adv. Data Anal. Classif., 12, 657-682, 2017 · Zbl 1416.94030 · doi:10.1007/s11634-017-0294-x
[13] Kim, K.; Kim, J.; Rinaldo, A.
[14] Seversky, L. M., Davis, S., and Berger, M., “On time-series topological data analysis: New data and opportunities,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (IEEE, 2016).
[15] Venkataraman, V., Ramamurthy, K. N., and Turaga, P., “Persistent homology of attractors for action recognition,” in 2016 IEEE International Conference on Image Processing (ICIP) (IEEE, 2016).
[16] Perea, J. A.; Harer, J., Sliding windows and persistence: An application of topological methods to signal analysis, Found. Comput. Math., 15, 799-838, 2015 · Zbl 1325.37054 · doi:10.1007/s10208-014-9206-z
[17] Perea, J. A., Topological time series analysis, Not. Am. Math. Soc., 66, 686-694, 2019 · Zbl 1416.37067 · doi:10.1090/noti18
[18] Berwald, J. J.; Gidea, M.; Vejdemo-Johansson, M., Automatic recognition and tagging of topologically different regimes in dynamical systems, Discontinuity Nonlinearity Complex., 3, 413-426, 2014 · Zbl 1316.70021 · doi:10.5890/DNC.2014.12.004
[19] Tan, E.; Corrêa, D.; Stemler, T.; Small, M., Grading your models: Assessing dynamics learning of models using persistent homology, Chaos, 31, 123109, 2021 · doi:10.1063/5.0073722
[20] Bubenik, P.; Wagner, A., Embeddings of persistence diagrams into Hilbert spaces, J. Appl. Comput. Topol., 4, 339-351, 2020 · Zbl 1455.55006 · doi:10.1007/s41468-020-00056-w
[21] Yesilli, M. C.; Tymochko, S.; Khasawneh, F. A.; Munch, E.
[22] Khasawneh, F. A.; Munch, E., Chatter detection in turning using persistent homology, Mech. Syst. Signal Process., 70-71, 527-541, 2016 · doi:10.1016/j.ymssp.2015.09.046
[23] Khasawneh, F. A.; Munch, E., Topological data analysis for true step detection in periodic piecewise constant signals, Proc. R. Soc. A, 474, 20180027, 2018 · Zbl 1407.62445 · doi:10.1098/rspa.2018.0027
[24] Gidea, M., “Topological data analysis of critical transitions in financial networks,” in 3rd International Winter School and Conference on Network Science: NetSci-X 2017 (Springer International Publishing, Cham, 2017), pp. 47-59.
[25] Gidea, M.; Katz, Y., Topological data analysis of financial time series: Landscapes of crashes, Physica A, 491, 820-834, 2018 · Zbl 1514.62206 · doi:10.1016/j.physa.2017.09.028
[26] Gidea, M.; Goldsmith, D.; Katz, Y.; Roldan, P.; Shmalo, Y., Topological recognition of critical transitions in time series of cryptocurrencies, Physica A, 548, 123843, 2020 · Zbl 07530523 · doi:10.1016/j.physa.2019.123843
[27] Rivera-Castro, R., Pilyugina, P., and Burnaev, E., “Topological data analysis for portfolio management of cryptocurrencies,” in 2019 International Conference on Data Mining Workshops (ICDMW) (IEEE, 2019).
[28] Majumdar, S.; Laha, A. K., Clustering and classification of time series using topological data analysis with applications to finance, Expert Syst. Appl., 162, 113868, 2020 · doi:10.1016/j.eswa.2020.113868
[29] Ignacio, P. S., Dunstan, C., Escobar, E., Trujillo, L., and Uminsky, D., “Classification of single-lead electrocardiograms: TDA informed machine learning,” in 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA) (IEEE, 2019).
[30] Stolz, B. J.; Harrington, H. A.; Porter, M. A., Persistent homology of time-dependent functional networks constructed from coupled time series, Chaos, 27, 047410, 2017 · doi:10.1063/1.4978997
[31] Majumder, S., Apicella, F., Muratori, F., and Das, K., “Detecting autism spectrum disorder using topological data analysis,” in ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2020).
[32] Chung, Y.-M.; Hu, C.-S.; Lo, Y.-L.; Wu, H.-T., A persistent homology approach to heart rate variability analysis with an application to sleep-wake classification, Front. Physiol., 12, 637684, 2021 · doi:10.3389/fphys.2021.637684
[33] Emrani, S.; Gentimis, T.; Krim, H., Persistent homology of delay embeddings and its application to wheeze detection, Signal Process. Lett. IEEE, 21, 459-463, 2014 · doi:10.1109/LSP.2014.2305700
[34] Tymochko, S.; Munch, E.; Khasawneh, F. A., Using zigzag persistent homology to detect Hopf bifurcations in dynamical systems, Algorithms, 13, 278, 2020 · doi:10.3390/a13110278
[35] Myers, A.; Munch, E.; Khasawneh, F. A., Persistent homology of complex networks for dynamic state detection, Phys. Rev. E, 100, 022314, 2019 · doi:10.1103/PhysRevE.100.022314
[36] Myers, A.; Khasawneh, F. A.; Munch, E.
[37] Bauer, U.; Hien, D.; Junge, O.; Mischaikow, K.; Snijders, M.
[38] Tempelman, J. R.; Khasawneh, F. A., A look into chaos detection through topological data analysis, Physica D, 406, 132446, 2020 · Zbl 1493.37100 · doi:10.1016/j.physd.2020.132446
[39] Myers, A.; Khasawneh, F.; Munch, E.
[40] Tralie, C., “High-dimensional geometry of sliding window embeddings of periodic videos,” in 32nd International Symposium on Computational Geometry (SoCG 2016), Leibniz International Proceedings in Informatics (LIPIcs) Vol. 51, edited by S. Fekete and A. Lubiw (Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2016), pp. 71:1-71:5. · Zbl 1387.68277
[41] Tymochko, S.; Munch, E.; Dunion, J.; Corbosiero, K.; Torn, R., Using persistent homology to quantify a diurnal cycle in hurricanes, Pattern Recognit. Lett., 133, 137-143, 2020 · doi:10.1016/j.patrec.2020.02.022
[42] Tralie, C. J.; Perea, J. A., (Quasi) periodicity quantification in video data, using topology, SIAM J. Imaging Sci., 11, 1049-1077, 2018 · Zbl 1401.65025 · doi:10.1137/17M1150736
[43] Levanger, R.; Xu, M.; Cyranka, J.; Schatz, M. F.; Mischaikow, K.; Paul, M., Correlations between the leading Lyapunov vector and pattern defects for chaotic Rayleigh-Bénard convection, Chaos, 29, 053103, 2019 · doi:10.1063/1.5071468
[44] Wu, C.; Hargreaves, C. A., Topological machine learning for multivariate time series, J. Exp. Theor. Artif. Intell., 34, 311-326, 2022 · doi:10.1080/0952813X.2021.1871971
[45] Kim, W.; Mémoli, F., Spatiotemporal persistent homology for dynamic metric spaces, Discrete Comput. Geom., 66, 831-875, 2021 · Zbl 1480.55007 · doi:10.1007/s00454-019-00168-w
[46] Cohen-Steiner, D., Edelsbrunner, H., and Morozov, D., “Vines and vineyards by updating persistence in linear time,” in Proceedings of the Twenty-Second Annual Symposium on Computational Geometry (ACM, 2006), pp. 119-126. · Zbl 1153.68388
[47] Ulmer, M.; Ziegelmeier, L.; Topaz, C. M., A topological approach to selecting models of biological experiments, PLoS One, 14, e0213679, 2019 · doi:10.1371/journal.pone.0213679
[48] Bhaskar, D.; Manhart, A.; Milzman, J.; Nardini, J. T.; Storey, K. M.; Topaz, C. M.; Ziegelmeier, L., Analyzing collective motion with machine learning and topology, Chaos, 29, 123125, 2019 · doi:10.1063/1.5125493
[49] Xian, L.; Adams, H.; Topaz, C. M.; Ziegelmeier, L., Capturing dynamics of time-varying data via topology, Found. Data Sci., 4, 1-36, 2022 · Zbl 1501.37084 · doi:10.3934/fods.2021033
[50] Güzel, I.; Munch, E.; Khasawneh, F.
[51] Kantz, H.; Schreiber, T., Nonlinear Time Series Analysis, 2003, Cambridge University Press
[52] Hirsch, M. W.; Smale, S.; Devaney, R. L., Differential Equations, Dynamical Systems, and an Introduction to Chaos, xiv+418, 2013, Elsevier/Academic Press: Elsevier/Academic Press, Amsterdam · Zbl 1239.37001
[53] Baker, G. L.; Gollub, J. P., Chaotic Dynamics: An Introduction, 1996, Cambridge University Press · Zbl 0887.58035
[54] Sayama, H., Introduction to the Modeling and Analysis of Complex Systems, 2015, Open SUNY Textbooks
[55] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141, 1963 · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020¡0130:DNF¿2.0.CO;2
[56] Datseris, G., DynamicalSystems.jl: A Julia software library for chaos and nonlinear dynamics, J. Open Source Softw., 3, 598, 2018 · doi:10.21105/joss.00598
[57] Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V. B., Julia: A fresh approach to numerical computing, SIAM Rev., 59, 65-98, 2017 · Zbl 1356.68030 · doi:10.1137/141000671
[58] Benettin, G.; Galgani, L.; Giorgilli, A.; Strelcyn, J.-M., Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory, Meccanica, 15, 9-20, 1980 · Zbl 0488.70015 · doi:10.1007/BF02128236
[59] Rösenstein, M. T.; Collins, J. J.; De Luca, C. J., A practical method for calculating largest Lyapunov exponents from small data sets, Physica D, 65, 117-134, 1993 · Zbl 0779.58030 · doi:10.1016/0167-2789(93)90009-P
[60] Dey, T. K.; Wang, Y., Computational Topology for Data Analysis, 2022, Cambridge University Press · Zbl 1498.57001
[61] Oudot, S. Y., Persistence Theory: From Quiver Representations to Data Analysis, 2017, American Mathematical Society
[62] Munch, E., A user’s guide to topological data analysis, J. Learn. Anal., 4, 47-61, 2017 · doi:10.18608/jla.2017.42.6
[63] Hatcher, A., Algebraic Topology, 2002, Cambridge University Press · Zbl 1044.55001
[64] Munkres, J. R., Elements of Algebraic Topology, 1984, Addison-Wesley · Zbl 0673.55001
[65] Johnson, M.; Jung, J.-H., Instability of the Betti sequence for persistent homology and a stabilized version of the Betti sequence, J. Korean Soc. Ind. Appl. Math., 25, 296-311, 2021 · Zbl 1501.55005 · doi:10.12941/jksiam.2021.25.296
[66] Chung, Y.-M.; Lawson, A., Persistence curves: A canonical framework for summarizing persistence diagrams, Adv. Comput. Math., 48, 6, 2022 · Zbl 1497.55008 · doi:10.1007/s10444-021-09893-4
[67] Cohen-Steiner, D.; Edelsbrunner, H.; Harer, J.; Mileyko, Y., Lipschitz functions have \(l_p\)-stable persistence, Found. Comput. Math., 10, 127-139, 2010 · Zbl 1192.55007 · doi:10.1007/s10208-010-9060-6
[68] Skraba, P.; Turner, K.
[69] Carlsson, G.; Zomorodian, A., The theory of multidimensional persistence, Discrete Comput. Geom., 42, 71-93, 2009 · Zbl 1187.55004 · doi:10.1007/s00454-009-9176-0
[71] Cavanna, N. J.; Jahanseir, M.; Sheehy, D. R.
[72] Tralie, C.; Saul, N.; Bar-On, R., Ripser.py: A lean persistent homology library for Python, J. Open Source Softw., 3, 925, 2018 · doi:10.21105/joss.00925
[73] Every zero-dimensional diagram for a point cloud has an infinite bar representing the first connected component, which is born and is considered to live for every value of \(\varepsilon \). Thus, the zero-dimensional CROCKER plots always have a region of 1 at their maximum \(\varepsilon\) boundary.
[74] Myers, A. D., Yesilli, M., Tymochko, S., Khasawneh, F., and Munch, E., “Teaspoon: A comprehensive Python package for topological signal processing,” in NeurIPS 2020 Workshop on Topological Data Analysis and Beyond (2020); available at https://openreview.net/forum?id=qUoVqrIcy2P.
[75] Parlitz, U., “Estimating Lyapunov exponents from time series,” in Chaos Detection and Predictability, edited by C. H. Skokos, G. A. Gottwald, and J. Laskar (Springer, Berlin, 2016), pp. 1-34.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.