×

Persistence of weighted ordinal partition networks for dynamic state detection. (English) Zbl 1515.37094

Summary: One of the most important problems arising in time series analysis is that of classifying the states of a dynamical system. That is, given a collection of time series, is it possible to perform two-state classification (chaotic versus periodic) of the underlying system? For this task, we turn to the field of topological data analysis, which encodes information about the shape and structure of data. In this paper, we investigate a more recent method for encoding the structure of the attractor as a weighted graph, known as the ordinal partition network, representing information about when the dynamical system has passed between certain regions of state space. We provide methods to incorporate the weighting information and show that this framework provides more resilience to noise or perturbations in the system as well as improving the accuracy of dynamic state identification.

MSC:

37M10 Time series analysis of dynamical systems
55N31 Persistent homology and applications, topological data analysis
62R40 Topological data analysis

Software:

KEPLER; SW1PerS; teaspoon
Full Text: DOI

References:

[1] Bandt, C. and Pompe, B., Permutation entropy: A natural complexity measure for time series, Phys. Rev. Lett., 88 (2002), doi:10.1103/physrevlett.88.174102.
[2] Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M., Time Series Analysis: Forecasting and Control, John Wiley & Sons, Hoboken, NJ, 2015.
[3] Carlsson, G., Topology and data, Bull. Amer. Math. Soc., 46 (2009), pp. 255-308, doi:10.1090/S0273-0979-09-01249-X. · Zbl 1172.62002
[4] Cincotta, P. and Simó, C., Conditional entropy, in Impact of Modern Dynamics in Astronomy, Springer, Berlin, 1999, pp. 195-209, doi:10.1007/978-94-011-4527-5_20.
[5] Cincotta, P. M. and Simó, C., Alternative tools to study global and local dynamics—Application to galactic dynamics, in The Chaotic Universe, World Scientific, River Edge, NJ, 2000, pp. 247-258, doi:10.1142/9789812793621_0015.
[6] Cohen-Steiner, D., Edelsbrunner, H., and Harer, J., Stability of persistence diagrams, Discrete Comput. Geom., 37 (2006), pp. 103-120, doi:10.1007/s00454-006-1276-5. · Zbl 1117.54027
[7] Coifman, R. R. and Lafon, S., Diffusion maps, Appl. Comput. Harmon. Anal., 21 (2006), pp. 5-30, doi:10.1016/j.acha.2006.04.006. · Zbl 1095.68094
[8] Cordani, B., Frequency modulation indicator, Arnold’s web and diffusion in the Stark-Quadratic-Zeeman problem, Phys. D, 237 (2008), pp. 2797-2815, doi:10.1016/j.physd.2008.04.021. · Zbl 1160.37385
[9] Dey, T. K. and Wang, Y., Computational Topology for Data Analysis, Cambridge University Press, Cambridge, 2021.
[10] Dijkstra, E. W., A note on two problems in connexion with graphs, Numer. Math., 1 (1959), pp. 269-271. · Zbl 0092.16002
[11] Donner, R. V., Zou, Y., Donges, J. F., Marwan, N., and Kurths, J., Recurrence networks—A novel paradigm for nonlinear time series analysis, New J. Phys., 12 (2010), 033025, doi:10.1088/1367-2630/12/3/033025. · Zbl 1360.90045
[12] Eckmann, J.-P., Kamphorst, S. O., and Ruelle, D., Recurrence plots of dynamical systems, Europhys. Lett., 4 (1987), pp. 973-977, doi:10.1209/0295-5075/4/9/004.
[13] Fraser, A. M. and Swinney, H. L., Independent coordinates for strange attractors from mutual information, Phys. Rev. A, 33 (1986), 1134. · Zbl 1184.37027
[14] Froeschlé, C., Gonczi, R., and Lega, E., The fast Lyapunov indicator: A simple tool to detect weak chaos. Application to the structure of the main asteroidal belt, Planet. Space Sci., 45 (1997), pp. 881-886, doi:10.1016/s0032-0633(97)00058-5.
[15] Gidea, M., Goldsmith, D., Katz, Y., Roldan, P., and Shmalo, Y., Topological recognition of critical transitions in time series of cryptocurrencies, Phys. A, 548 (2020), 123843, doi:10.1016/j.physa.2019.123843. · Zbl 07530523
[16] Gidea, M. and Katz, Y., Topological data analysis of financial time series: Landscapes of crashes, Phys. A, 491 (2018), pp. 820-834, doi:10.1016/j.physa.2017.09.028. · Zbl 1514.62206
[17] Gottwald, G. A. and Melbourne, I., On the implementation of the 0-1 test for chaos, SIAM J. Appl. Dyn. Syst., 8 (2009), pp. 129-145, doi:10.1137/080718851. · Zbl 1161.37054
[18] Guzzo, M., Lega, E., and Froeschlé, C., On the numerical detection of the effective stability of chaotic motions in quasi-integrable systems, Phys. D, 163 (2002), pp. 1-25, doi:10.1016/s0167-2789(01)00383-9. · Zbl 0986.37076
[19] Hatcher, A., Algebraic Topology, Cambridge University Press, Cambridge, 2002. · Zbl 1044.55001
[20] Khasawneh, F. and Munch, E., Chatter detection in turning using persistent homology, Mech. Syst. Signal Process., 70-71 (2016), pp. 527-541, doi:10.1016/j.ymssp.2015.09.046.
[21] Khasawneh, F. A. and Munch, E., Topological data analysis for true step detection in periodic piecewise constant signals, Proc. A, 474 (2018), 20180027, doi:10.1098/rspa.2018.0027. · Zbl 1407.62445
[22] Laskar, J., Frequency analysis for multi-dimensional systems, Global dynamics and diffusion, Phys. D, 67 (1993), pp. 257-281, doi:10.1016/0167-2789(93)90210-r. · Zbl 0783.58027
[23] Lega, E., Guzzo, M., and Froeschlé, C., Theory and applications of the fast Lyapunov indicator (FLI) method, in Chaos Detection and Predictability, Springer, Berlin, 2016, pp. 35-54, doi:10.1007/978-3-662-48410-4_2.
[24] Marwan, N., Carmenromano, M., Thiel, M., and Kurths, J., Recurrence plots for the analysis of complex systems, Phys. Rep., 438 (2007), pp. 237-329, doi:10.1016/j.physrep.2006.11.001.
[25] McCullough, M., Small, M., Stemler, T., and Iu, H. H.-C., Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems, Chaos, 25 (2015), 053101, doi:10.1063/1.4919075. · Zbl 1374.37106
[26] Munch, E., A user’s guide to topological data analysis, J. Learn. Anal., 4 (2017), pp. 47-61, doi:10.18608/jla.2017.42.6.
[27] Munkres, J. R., Elements of Algebraic Topology, Addison-Wesley, Menlo Park, CA, 1993.
[28] Myers, A. and Khasawneh, F. A., On the automatic parameter selection for permutation entropy, Chaos, 30 (2020), 033130, doi:10.1063/1.5111719.
[29] Myers, A., Munch, E., and Khasawneh, F. A., Persistent homology of complex networks for dynamic state detection, Phys. Rev. E, 100 (2019), doi:10.1103/physreve.100.022314.
[30] Myers, A., Yesilli, M. C., Tymochko, S., Khasawneh, F. A., and Munch, E., Teaspoon: A comprehensive Python package for topological signal processing, in Proceedings of NeurIPS, , 2020.
[31] Núñez, J. A., Cincotta, P. M., and Wachlin, F. C., Information entropy, in Chaos in Gravitational N-Body Systems, Springer, Berlin, 1996, pp. 43-53, doi:10.1007/978-94-009-0307-4_4.
[32] Oudot, S. Y., Persistence Theory: From Quiver Representations to Data Analysis, , American Mathematical Society, Providence, RI, 2015. · Zbl 1335.55001
[33] Parlitz, U., Estimating Lyapunov exponents from time series, in Chaos Detection and Predictability, Springer, Berlin, 2016, pp. 1-34, doi:10.1007/978-3-662-48410-4_1.
[34] Perea, J. A., Topological time series analysis, Notices Amer. Math. Soc., 66 (2019), pp. 686-694, doi:10.1090/noti1869. · Zbl 1416.37067
[35] Perea, J. A., Deckard, A., Haase, S. B., and Harer, J., SW1pers: Sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data, BMC Bioinform., 16 (2015), doi:10.1186/s12859-015-0645-6.
[36] Perea, J. A. and Harer, J., Sliding windows and persistence: An application of topological methods to signal analysis, Found. Comput. Math., 15 (2015), pp. 799-838, doi:10.1007/s10208-014-9206-z. · Zbl 1325.37054
[37] Robinson, M., Topological Signal Processing, Springer, Berlin, 2014, doi:10.1007/978-3-642-36104-3. · Zbl 1294.94001
[38] Šidlichovský, M. and Nesvorný, D., Frequency modified Fourier transform and its application to asteroids, Celestial Mech. Dynam. Astronom., 65 (1996), pp. 137-148, doi:10.1007/bf00048443. · Zbl 0893.70009
[39] Small, M., Complex networks from time series: Capturing dynamics, in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS2013), , IEEE, 2013, doi:10.1109/iscas.2013.6572389.
[40] Takens, F., Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence, Warwick 1980, , Rand, D. and Young, L.-S., eds., Springer, Berlin, 1981, pp. 366-381, doi:10.1007/BFb0091924. · Zbl 0513.58032
[41] Tang, X. and Boozer, A., Finite time Lyapunov exponent and advection-diffusion equation, Phys. D, 95 (1996), pp. 283-305, doi:10.1016/0167-2789(96)00064-4. · Zbl 0899.76343
[42] Tempelman, J. R. and Khasawneh, F. A., A look into chaos detection through topological data analysis, Phys. D, 406 (2020), 132446, doi:10.1016/j.physd.2020.132446. · Zbl 1493.37100
[43] Tempelman, J. R., Myers, A., Scruggs, J. T., and Khasawneh, F. A., Effects of correlated noise on the performance of persistence based dynamic state detection methods, in Proceedings of the 32nd Conference on Mechanical Vibration and Noise (VIB), , Vol. 7, American Society of Mechanical Engineers, New York, 2020, doi:10.1115/detc2020-22592.
[44] Tralie, C. J. and Perea, J. A., (Quasi)periodicity Quantification in Video Data, Using Topology, https://arxiv.org/abs/1704.08382v1, 2018.
[45] Yesilli, M. C., Khasawneh, F. A., and Otto, A., Topological Feature Vectors for Chatter Detection in Turning Processes, preprint, https://arxiv.org/abs/1905.08671v2, 2019.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.