×

An efficient Hermite-Galerkin spectral scheme for three-dimensional incompressible Hall-magnetohydrodynamic system on infinite domain. (English) Zbl 07797665

Summary: The Hall-magnetohydrodynamic (Hall-MHD) system plays a significant role in the fluid description of an astrophysical plasma that features fast magnetic reconnection. Compared to the classical MHD system, the appearance of Hall term brings much more challenges in the field of numerical treatment. The aim of this paper is to construct an efficient spectral scheme for incompressible Hall-MHD system on three-dimensional infinite domain \(\mathbb{R}^3\). Combining with a novel \((H_{N + 2}, H_N)\)-Hermite-Galerkin spectral scheme for spatial approximation, a new non-zero constant function approach for the nonlinear terms, a second-order projection method for the momentum equations, and BDF2 scheme for the decoupled system, here we establish, for the first time, a fully decoupled, completely linearized, and unconditionally energy stable scheme with directly spatial approximation in \(\mathbb{R}^3\) and second-order temporal accuracy for incompressible Hall-MHD system. Numerical results are presented to illustrate the features of the proposed scheme, including convergence/stability tests and simulations of O- and X-points appearing in fast magnetic reconnection within the Hall-MHD regime.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Qxx Partial differential equations of mathematical physics and other areas of application
76Wxx Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI

References:

[1] Ruderman, M. S., Stability of quasilongitudinally propagating solitons in a plasma with hall dispersion. Fluid Dyn., 299-305 (1987) · Zbl 0639.76057
[2] Huba, J. D., Hall magnetohydrodynamics in space and laboratory plasmas. Phys. Plasmas, 2504 (1995)
[3] Biskamp, D., Magnetic Reconnection in Plasmas (2000), Cambridge Univ. Press: Cambridge Univ. Press New York · Zbl 0891.76094
[4] Galtier, S.; Buchlin, E., Multiscale Hall-magnetohydrodynamic turbulence in the solar wind. Astrophys. J. (2007)
[5] Mozer, F. S.; Bale, S. D.; Phan, T. D., Evidence of diffusion regions at a subsolar magnetopause crossing. Phys. Rev. Lett. (2002)
[6] Bandyopadhyay, R.; Valvo, L.; Chasapis, A.; Hellinger, P.; Matthaeus, W.; Verdini, A.; Landi, S.; Franci, L.; Matteini, L.; Giles, B.; Gershman, D.; Moore, T.; Pollock, C.; Russell, C.; Strangeway, R.; Torbert, R.; Burch, J., In Situ observation of Hall magnetohydrodynamic cascade in space plasma. Phys. Rev. Lett. (2020)
[7] Shalybkov, D.; Urpin, V., The Hall effect and the decay of magnetic fields. Astron. Astrophys., 685-690 (1997)
[8] Yamada, M.; Ren, Y.; Ji, H.; Breslau, J.; Gerhardt, S.; Kulsrud, R.; Kuritsyn, A., Experimental study of two-fluid effects on magnetic reconnection in a laboratory plasma with variable collisionality. Phys. Plasmas (2006)
[9] Banerjee, S.; Galtier, S., Chiral exact relations for helicities in Hall magnetohydrodynamic turbulence. Phys. Rev. E (2016)
[10] Shaikh, D.; Shukla, P. K., 3D simulations of fluctuation spectra in the Hall-MHD plasma. Phys. Rev. Lett. (2009)
[11] Gourdain, P.; Seyler, C., Impact of the Hall effect on high-energy-density plasma jets. Phys. Rev. Lett. (2013)
[12] Dai, M., Non-unique weak solutions in Leray-Hopf class for the three-dimensional Hall-MHD system. SIAM J. Math. Anal., 5979-6016 (2021) · Zbl 1503.76128
[13] Chae, D.; Wolf, J., On partial regularity for the 3D nonstationary Hall magnetohydrodynamics equations on the plane. SIAM J. Math. Anal., 443-469 (2016) · Zbl 1336.35287
[14] Ye, Z., Well-posedness results for the 3D incompressible Hall-MHD equations. J. Differ. Equ., 130-216 (2022) · Zbl 1490.35359
[15] Wan, R.; Zhou, Y., Global well-posedness, BKM blow-up criteria and zero \(h\) limit for the 3D incompressible Hall-MHD equations. J. Differ. Equ., 3724-3747 (2019) · Zbl 1417.35145
[16] Liu, L.; Tan, J., Global well-posedness for the Hall-magnetohydrodynamics system in larger critical Besov space. J. Differ. Equ., 382-413 (2021) · Zbl 1454.35291
[17] Meyrand, R.; Galtier, S., Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence. Phys. Rev. Lett. (2012)
[18] Strumik, M.; Stasiewicz, K., Multidimensional Hall magnetohydrodynamics with isotropic or anisotropic thermal pressure: numerical scheme and its validation using solitary waves. J. Comput. Phys., 846-886 (2017) · Zbl 1378.76142
[19] Béthune, W.; Lesur, G.; Ferreira, J., Self-organisation in protoplanetary discs: global, non-stratified Hall-MHD simulations. Astron. Astrophys., A87 (2016)
[20] Xie, L.; Li, L.; Zhang, Y.; Feng, Yo.; Wang, X.; Zhang, A.; Kong, L., Three-dimensional Hall MHD simulation of lunar minimagnetosphere: general characteristics and comparison with Chang’E-2 observations. J. Geophys. Res. Space Phys., 6559-6568 (2015)
[21] Miura, H.; Araki, K.; Hamba, F., Hall effects and sub-grid-scale modeling in magnetohydrodynamic turbulence simulations. J. Comput. Phys., 385-395 (2016) · Zbl 1349.76130
[22] Miura, H.; Hamba, F., Sub-grid-scale model for studying Hall effects on macroscopic aspects of magnetohydrodynamic turbulence. J. Comput. Phys. (2022) · Zbl 1537.76051
[23] Chacón, L.; Knoll, D. A., A 2D high-\(β\) Hall MHD implicit nonlinear solver. J. Comput. Phys., 573-592 (2003) · Zbl 1127.76375
[24] Ovtchinnikov, S.; Dobrian, F.; Cai, X.-C.; Keyes, D. E., Additive Schwarz-based fully coupled implicit methods for resistive Hall magnetohydrodynamic problems. J. Comput. Phys., 1919-1936 (2007) · Zbl 1343.76049
[25] Shen, J.; Xu, J.; Yang, J., The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys., 407-416 (2018) · Zbl 1380.65181
[26] Shen, J.; Xu, J., Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal., 2895-2912 (2018) · Zbl 1403.65047
[27] Shen, J.; Xu, J.; Yang, J., A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev., 474-506 (2019) · Zbl 1422.65080
[28] Li, X.; Shen, J.; Liu, Z., New SAV-pressure correction methods for the Navier-Stokes equations: stability and error analysis. Math. Comput., 141-167 (2022) · Zbl 1479.35625
[29] Li, X.; Wang, W.; Shen, J., Stability and error analysis of IMEX SAV schemes for the magneto-hydrodynamic equations. SIAM J. Numer. Anal., 1026-1054 (2022) · Zbl 1492.65269
[30] Yang, X., On a novel fully-decoupled, second-order accurate energy stable numerical scheme for a binary fluid-surfactant phase-field model. SIAM J. Sci. Comput., B479-B507 (2021) · Zbl 1478.65100
[31] Yang, X., Numerical approximations of the Navier-Stokes equation coupled with volume-conserved multi-phase-field vesicles system: fully-decoupled, linear, unconditionally energy stable and second-order time-accurate numerical scheme. Comput. Methods Appl. Mech. Eng. (2021) · Zbl 1506.76105
[32] Yang, X., A new efficient fully-decoupled and second-order time-accurate scheme for Cahn-Hilliard phase-field model of three-phase incompressible flow. Comput. Methods Appl. Mech. Eng. (2021) · Zbl 1506.76193
[33] Yang, X., A novel fully-decoupled, second-order time-accurate, unconditionally energy stable scheme for a flow-coupled volume-conserved phase-field elastic bending energy model. J. Comput. Phys. (2021) · Zbl 07511678
[34] Zhang, G.; He, X.; Yang, X., A fully decoupled linearized finite element method with second-order temporal accuracy and unconditional energy stability for incompressible MHD equations. J. Comput. Phys. (2022) · Zbl 1537.76078
[35] Badia, S.; Planas, R.; Gutiérrez-Santacreu, J. V., Unconditionally stable operator splitting algorithms for the incompressible magnetohydrodynamics system discretized by a stabilized finite element formulation based on projections. Int. J. Numer. Methods Eng., 302-328 (2013) · Zbl 1352.76122
[36] Choi, H.; Shen, J., Efficient splitting schemes for magneto-hydrodynamic equations. Sci. China Math., 1495-1510 (2016) · Zbl 1388.76224
[37] Zhang, G.; He, Y., Decoupled schemes for unsteady MHD equations II: finite element spatial discretization and numerical implementation. Comput. Math. Appl., 1390-1406 (2015) · Zbl 1443.65232
[38] Yin, Z.; Chang, L.; Hu, W.; Li, Q.; Wang, H., Numerical simulationson thermocapillary migrations of nondeformable droplets with large Marangoni numbers. Phys. Fluids (2012)
[39] Montgomery, D. C.; Matthaeus, W. H., Oseen vortex as a maximum entropy state of a two dimensional fluid. Phys. Fluids (2011)
[40] Shen, J.; Tang, T.; Wang, L. L., Spectral Methods: Algorithms, Analysis and Applications. Springer Ser. Comput. Math. (2011), Springer: Springer Heidelberg · Zbl 1227.65117
[41] Schözau, D., Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math., 771-800 (2004) · Zbl 1098.76043
[42] Badia, S.; Codina, R.; Planas, R., On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics. J. Comput. Phys., 399-416 (2013) · Zbl 1284.76248
[43] Threlfall, J. W.; Parnell, C. E.; De Moortel, I.; McClements, K. G.; Arber, T. D., Nonlinear wave propagation and reconnection at magnetic x-points in the Hall MHD regime. Astron. Astrophys., A24 (2012)
[44] Shi, C.; Tenerani, A.; Velli, M.; Lu, S., Fast recursive reconnection and the Hall effect: Hall-MHD simulations. Astrophys. J., 172 (2019)
[45] Mc Laughlin, J. A.; Hood, A. W.; de Moortel, I., Review article: MHD wave propagation near coronal null points of magnetic fields. Space Sci. Rev., 205-236 (2011)
[46] Guermond, J.; Minev, P.; Shen, J., An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng., 6011-6045 (2006) · Zbl 1122.76072
[47] E, W.; Liu, J., Projection method I: convergence and numerical boundary layers. SIAM J. Numer. Anal., 1017-1057 (1995) · Zbl 0842.76052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.