×

Convergence rate to equilibrium for collisionless transport equations with diffuse boundary operators: a new tauberian approach. (English) Zbl 1523.82006

Summary: This paper provides a new tauberian approach to the study of quantitative time asymptotics of collisionless transport semigroups with general diffuse boundary operators. We obtain an (almost) optimal algebraic rate of convergence to equilibrium under very general assumptions on the initial datum and the boundary operator. The rate is prescribed by the maximal gain of integrability that the boundary operator is able to induce. The proof relies on a representation of the collisionless transport semigroups by a (kind of) Dyson-Phillips series and on a fine analysis of the trace on the imaginary axis of Laplace transform of remainders (of large order) of this series. Our construction is systematic and is based on various preliminary results of independent interest.

MSC:

82C40 Kinetic theory of gases in time-dependent statistical mechanics
35F15 Boundary value problems for linear first-order PDEs
47D06 One-parameter semigroups and linear evolution equations
44A10 Laplace transform
35Q82 PDEs in connection with statistical mechanics

References:

[1] Aoki, K.; Golse, F., On the speed of approach to equilibrium for a collisionless gas, Kinet. Relat. Models, 4, 87-107 (2011) · Zbl 1218.82019
[2] Arendt, W.; Batty, Ch. J.K.; Hieber, M.; Neubrander, F., Vector-Valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, vol. 96 (2001), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0978.34001
[3] Arlotti, L., Explicit transport semigroup associated to abstract boundary conditions, Dynamical systems, differential equations and applications. 8th AIMS Conference. Suppl. Vol. I. Dynamical systems, differential equations and applications. 8th AIMS Conference. Suppl. Vol. I, Discrete Contin. Dyn. Syst., Ser. A, 102-111 (2011) · Zbl 1306.47052
[4] Arlotti, L.; Lods, B., An \(L^p\)-approach to the well-posedness of transport equations associated to a regular field: part II, Mediterr. J. Math., 16, Article 145 pp. (2019) · Zbl 1427.47015
[5] Arlotti, L.; Banasiak, J.; Lods, B., A new approach to transport equations associated to a regular field: trace results and well-posedness, Mediterr. J. Math., 6, 367-402 (2009) · Zbl 1198.47055
[6] Bakry, D.; Cattiaux, P.; Guillin, A., Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré, J. Funct. Anal., 254, 727-759 (2008) · Zbl 1146.60058
[7] Bátkai, A.; Engel, K.-J.; Prüss, J.; Schnaubelt, R., Polynomial stability of operator semigroups, Math. Nachr., 279, 1425-1440 (2006) · Zbl 1118.47034
[8] Batty, C. J.K.; Duyckaerts, T., Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 8, 4, 765-780 (2008) · Zbl 1185.47043
[9] Batty, C. J.K.; Chill, R.; Tomilov, Y., Fine scales of decay of operator semigroups, J. Eur. Math. Soc., 18, 4, 853-929 (2016) · Zbl 1418.34120
[10] Bernou, A., A semigroup approach to the convergence rate of a collisionless gas, Kinet. Relat. Models, 13, 1071-1106 (2020) · Zbl 1464.35277
[11] Bernou, A.; Fournier, N., A coupling approach for the convergence to equilibrium for a collisionless gas, Ann. Appl. Probab., 32, 764-811 (2022) · Zbl 1495.82026
[12] Bernou, A., Convergence toward the steady state of a collisionless gas with Cercignani-Lampis boundary condition, Commun. Partial Differ. Equ., 47, 724-773 (2022) · Zbl 1491.35380
[13] Brézis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext (2011), Springer: Springer New York · Zbl 1220.46002
[14] Briant, M.; Guo, Y., Asymptotic stability of the Boltzmann equation with Maxwell boundary conditions, J. Differ. Equ., 261, 7000-7079 (2016) · Zbl 1352.35088
[15] Caflisch, R. E., The Boltzmann equation with a soft potential, I. Linear, spatially homogeneous, Commun. Math. Phys., 74, 71-95 (1980) · Zbl 0434.76065
[16] Carrapatoso, K.; Mischler, S., Landau equation for very soft and Coulomb potentials near Maxwellians, Ann. PDE, 3, 1, Article 1 pp. (2017) · Zbl 1404.35043
[17] Carrapatoso, K.; Desvillettes, L.; He, L., Estimates for the large time behavior of the Landau equation in the Coulomb case, Arch. Ration. Mech. Anal., 224, 381-420 (2017) · Zbl 1390.35360
[18] Cercignani, C.; Illner, R.; Pulvirenti, M., The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, vol. 106 (1994), Springer-Verlag: Springer-Verlag New York · Zbl 0813.76001
[19] Cessenat, M., Théorèmes de traces \(L_p\) pour les espaces de fonctions de la neutronique, C. R. Acad. Sci. Paris, Ser. I, 299, 831-834 (1984) · Zbl 0568.46030
[20] Cessenat, M., Théorèmes de traces pour les espaces de fonctions de la neutronique, C. R. Acad. Sci. Paris, Ser. I, 300, 89-92 (1985) · Zbl 0648.46028
[21] Chacon, R. V.; Krengel, U., Linear modulus of linear operator, Proc. Am. Math. Soc., 15, 553-559 (1964) · Zbl 0168.11701
[22] Chen, H., Cercignani-Lampis boundary in the Boltzmann theory, Kinet. Relat. Models, 13, 549-597 (2020) · Zbl 1447.76029
[23] Chill, R.; Seifert, D., Quantified versions of Ingham’s theorem, Bull. Lond. Math. Soc., 48, 519-532 (2016) · Zbl 1359.40005
[24] Esposito, R.; Guo, Y.; Kim, C.; Marra, R., Non-isothermal boundary in the Boltzmann theory and Fourier law, Commun. Math. Phys., 323, 177-239 (2013) · Zbl 1280.82009
[25] Grafakos, L., Classical Fourier Analysis, Graduate Texts in Mathematics, vol. 249 (2014), Springer: Springer New York · Zbl 1304.42001
[26] Guo, Y., Decay and continuity of the Boltzmann equation in bounded domains, Arch. Ration. Mech. Anal., 197, 713-809 (2010) · Zbl 1291.76276
[27] Jin, J.; Kim, C., Damping of kinetic transport equation with diffuse boundary condition (2020), preprint
[28] Kato, T., Perturbation Theory for Linear Operators, Classics in Mathematics (1980), Springer Verlag · Zbl 0836.47009
[29] Kavian, O.; Mischler, S.; Ndao, M., The Fokker-Planck equation with subcritical confinement force, J. Math. Pures Appl., 151, 171-211 (2021) · Zbl 1491.35415
[30] Kuo, H. W., Equilibrating effect of Maxwell-type boundary condition in highly rarefied gas, J. Stat. Phys., 161, 743-800 (2015) · Zbl 1332.82076
[31] Kuo, H. W.; Liu, T. P.; Tsai, L. C., Free molecular flow with boundary effect, Commun. Math. Phys., 318, 375-409 (2013) · Zbl 1263.82043
[32] Lods, B.; Mokhtar-Kharroubi, M., On eventual compactness of collisionless kinetic semigroups with velocities bounded away from zero, J. Evol. Equ., 22, Article 25 pp. (2022) · Zbl 1487.35088
[33] Lods, B.; Mokhtar-Kharroubi, M., Convergence rate to equilibrium for conservative scattering models on the torus: a new tauberian approach, submitted for publication · Zbl 1387.35442
[34] Lods, B.; Mokhtar-Kharroubi, M., Quantitative tauberian approach to collisionless transport equations with diffuse boundary operators (2020), preprint · Zbl 1439.82037
[35] Lods, B.; Mokhtar-Kharroubi, M.; Rudnicki, R., Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 37, 877-923 (2020) · Zbl 1439.82037
[36] Marek, I., Frobenius theory of positive operators: comparison theorems and applications, SIAM J. Appl. Math., 19, 607-628 (1970) · Zbl 0219.47022
[37] Mokhtar-Kharroubi, M.; Rudnicki, R., On asymptotic stability and sweeping of collisionless kinetic equations, Acta Appl. Math., 147, 19-38 (2017) · Zbl 1369.82030
[38] Mokhtar-Kharroubi, M.; Seifert, D., Rates of convergence to equilibrium for collisionless kinetic equations in slab geometry, J. Funct. Anal., 275, 2404-2452 (2018) · Zbl 1401.82030
[39] Röckner, M.; Wang, F. Y., Weak Poincaré inequalities and \(L^2\)-convergence rates of Markov semigroups, J. Funct. Anal., 185, 564-603 (2001) · Zbl 1009.47028
[40] Strain, R. M.; Guo, Y., Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., 187, 2, 287-339 (2008) · Zbl 1130.76069
[41] Stroock, D. W., Essentials of Integration Theory for Analysis (2011), Springer · Zbl 1228.26001
[42] Toscani, G.; Villani, C., On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds, J. Stat. Phys., 98, 1279-1309 (2000) · Zbl 1034.82032
[43] Tsuji, T.; Aoki, K.; Golse, F., Relaxation of a free-molecular gas to equilibrium caused by interaction with vessel wall, J. Stat. Phys., 140, 518-543 (2010) · Zbl 1203.76134
[44] Voigt, J., Positivity in time dependent linear transport theory, Acta Appl. Math., 2, 311-331 (1984) · Zbl 0579.47040
[45] Voigt, J., Functional analytic treatment of the initial boundary value problem for collisionless gases (1981), Habilitationsschrift, München
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.