×

A deterministic numerical scheme for an electron heat transport model. (English) Zbl 1540.76129

Summary: In inertial confinement fusion plasma, the electron population may be strongly out-of-equilibrium on a duration and spatial domain comparable to those of the implosion process itself. At such a scale, full kinetic simulations are prohibitively demanding, which leads to persistent difficulties when trying to analyse effects of microscopic processes on the macroscopic evolution. For that purpose reduced kinetic transport models are developed. They aim at providing a kinetic closure to hydrodynamic equations through the computation of heat flux density, stress viscosity and electromagnetic fields from the electron distribution function. If sufficiently accurate, the latter would allow to analyse finer kinetic phenomena such as instabilities in plasma. The choice among existing models is thus dictated by a compromise between their precision and the efficiency of their numerical implementation. In this paper, a first order deterministic scheme is proposed for one such model that overcomes the difficulties appearing in previous implementations.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
35L65 Hyperbolic conservation laws
76X05 Ionized gas flow in electromagnetic fields; plasmic flow

Software:

HE-E1GODF; HLLE
Full Text: DOI

References:

[1] Albritton, J.; Williams, E.; Bernstein, I.; Swartz, K., Nonlocal electron heat transport by not quite Maxwell-Boltzmann distributions, Physical Review Letters, 57, 15, 1887 (1986)
[2] S. Atzeni, J. Meyer-ter Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, Oxford, 2004.
[3] Braginskii, S., Transport processes in a plasma, Rev. Plasma Phys., 1 (1965)
[4] Chandrasekhar, S., Radiative Transfer (2013), Courier Corporation · Zbl 0037.43201
[5] Chrisment, A.; Loiseau, P.; Feugeas, J.-L.; Masson-Laborde, P.-E.; Mathiaud, J.; Tikhonchuk, V.; Ph. Nicolaï, Analysis of a kinetic model for electron heat transport in inertial confinement fusion plasmas, Phys. Plasmas, 29, 6, Article 062301 pp. (2022)
[6] Clerc, S., A domain decomposition method for nonlinear steady-state flow computations, Nucl. Sci. Eng., 123, 3, 415-420 (1996)
[7] Courant, R.; Friedrichs, K.; Lewy, H., On the partial difference equations of mathematical physics, IBM Journal of Research and Development, 11, 2, 215-234 (1967) · Zbl 0145.40402
[8] D. Deck, K.-C. Le Thanh, ALADIN is a Vlasov-Fokker-Planck code developed at CEA by D. Deck and K.-C. Le Thanh based on [18].
[9] Decoster, A.; Markowich, P. A.; Perthame, B., Modeling of Collisions, Volume 2 (1998), Elsevier Masson · Zbl 0924.76002
[10] D. Del Sorbo, An Entropic Approach to Magnetized Nonlocal Transport and Other Kinetic Phenomena in High-Energy-Density Plasmas, (Ph.D. thesis), Bordeaux, 2015.
[11] Del Sorbo, D.; Feugeas, J.-L.; Nicolaı̈, Ph.; Olazabal-Loumé, M.; Dubroca, B.; Guisset, S.; Touati, M.; Tikhonchuk, V., Reduced entropic model for studies of multidimensional nonlocal transport in high-energy-density plasmas, Phys. Plasmas, 22, 8, Article 082706 pp. (2015)
[12] Godunov, S., A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Matematicheskii Sbornik, 89, 3, 271-306 (1959) · Zbl 0171.46204
[13] Harten, A.; Lax, P.; van Leer, B., On upstream differencing and godunov-type schemes for hyperbolic conservation laws, SIAM Review, 25, 1, 35-61 (1983) · Zbl 0565.65051
[14] Higdon, R., Initial-boundary value problems for linear hyperbolic system, SIAM Review, 28, 2, 177-217 (1986) · Zbl 0603.35061
[15] Holec, M.; Loiseau, P.; Debayle, A.; Brodrick, J.; Del Sorbo, D.; Ridgers, C.; Tikhonchuk, V.; Feugeas, J.-L.; Nicolai, Ph.; Dubroca, B., AWBS kinetic modeling of electrons with nonlocal ohms law in plasmas relevant to inertial confinement fusion (2018), arXiv preprint arXiv:1901.11378
[16] Houtput, M.; Tempere, J., Revisiting the maxwell multipoles for vectorized angular functions (2021), arXiv preprint arXiv:2110.06732
[17] Joglekar, A.; Winjum, B.; Tableman, A.; Wen, H.; Tzoufras, M.; Mori, W., Validation of OSHUN against collisionless and collisional plasma physics, Plasma Physics and Controlled Fusion, 60, 6, Article 064010 pp. (2018)
[18] Kingham, R.; Bell, A., An implicit Vlasov-Fokker-Planck code to model non-local electron transport in 2-d with magnetic fields, Journal of Computational Physics, 194, 1, 1-34 (2004) · Zbl 1136.76400
[19] Landau, L., Die kinetische gleiehung fur den fall Coulombscher Wecgselwirkung, Phys. Z. Sowjet., 10, 154 (1936), See also Collected papers of L. D. Landau, ed. by D. Ter Haar, Pergamon Press, Oxford, 1965, p. 163 · Zbl 0015.38202
[20] Lefebvre, E.; Cochet, N.; Fritzler, S.; Malka, V.; Aléonard, M.-M.; Chemin, J.-F.; Darbon, S.; Disdier, L.; Faure, J.; Fedotoff, A., Electron and photon production from relativistic laser-plasma interactions, Nuclear Fusion, 43, 7, 629 (2003)
[21] LeVeque, R., Balancing source terms and flux gradients in high-resolution godunov methods: the quasi-steady wave-propagation algorithm, Journal of Computational Physics, 146, 1, 346-365 (1998) · Zbl 0931.76059
[22] Nikl, J.; Göthel, I.; Kuchařík, M.; Weber, S.; Bussmann, M., Implicit reduced vlasov-fokker-planck-maxwell model based on high-order mixed elements, Journal of Computational Physics, 434, Article 110214 pp. (2021) · Zbl 07508524
[23] Pérez, F.; Gremillet, L.; Decoster, A.; Drouin, M.; Lefebvre, E., Improved modeling of relativistic collisions and collisional ionization in particle-in-cell codes, Phys. Plasmas, 19, 8, Article 083104 pp. (2012)
[24] Roe, P., Upwind differencing schemes for hyperbolic conservation laws with source terms, (Nonlinear Hyperbolic Problems (1987), Springer), 41-51 · Zbl 0626.65086
[25] Sonnendrücker, E.; Wacher, A.; Hatzky, R.; Kleiber, R., A split control variate scheme for PIC simulations with collisions, Journal of Computational Physics, 295 (2015) · Zbl 1349.82120
[26] Spitzer, L.; Härm, R., Transport phenomena in a completely ionized gas, Physical Review, 89, 5, 977 (1953) · Zbl 0050.23505
[27] Tang, H.; Haynes, R.; Houzeaux, G., A review of domain decomposition methods for simulation of fluid flows: concepts, algorithms, and applications, Arch. Comput. Methods Eng., 28, 3, 841-873 (2021)
[28] Tikhonchuk, V., Physics of laser plasma interaction and particle transport in the context of inertial confinement fusion, Nuclear Fusion, 59, 3, Article 032001 pp. (2018)
[29] Toro, E., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (2013), Springer Science & Business Media
[30] Weinan, E., Principles of Multiscale Modeling (2011), Cambridge University Press · Zbl 1238.00010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.