×

An EFT description of galaxy intrinsic alignments. (English) Zbl 1489.85019


MSC:

85A15 Galactic and stellar structure
83C50 Electromagnetic fields in general relativity and gravitational theory
78A45 Diffraction, scattering
47A10 Spectrum, resolvent
62H20 Measures of association (correlation, canonical correlation, etc.)
55P10 Homotopy equivalences in algebraic topology
81T20 Quantum field theory on curved space or space-time backgrounds
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T05 Axiomatic quantum field theory; operator algebras
83B05 Observational and experimental questions in relativity and gravitational theory

References:

[1] M.A. Troxel and M. Ishak, 2014 The intrinsic alignment of galaxies and its impact on weak gravitational lensing in an era of precision cosmology, https://doi.org/10.1016/j.physrep.2014.11.001 Phys. Rept.558 1 [1407.6990] · Zbl 1357.85002 · doi:10.1016/j.physrep.2014.11.001
[2] B. Joachimi et al., 2015 Galaxy alignments: an overview, https://doi.org/10.1007/s11214-015-0177-4 Space Sci. Rev.193 1 [1504.05456] · doi:10.1007/s11214-015-0177-4
[3] C.M. Hirata et al., 2007 Intrinsic galaxy alignments from the 2SLAQ and SDSS surveys: Luminosity and redshift scalings and implications for weak lensing surveys, https://doi.org/10.1111/j.1365-2966.2007.12312.x Mon. Not. Roy. Astron. Soc.381 1197 [astro-ph/0701671] · doi:10.1111/j.1365-2966.2007.12312.x
[4] T. Okumura, Y.P. Jing and C. Li, 2009 Intrinsic ellipticity correlation of SDSS luminous red galaxies and misalignment with their host dark matter halos, https://doi.org/10.1088/0004-637X/694/1/214 Astrophys. J.694 214 [0809.3790] · doi:10.1088/0004-637X/694/1/214
[5] T. Okumura and Y.P. Jing, 2009 The gravitational shear — Intrinsic ellipticity correlation functions of luminous red galaxies in observation and in ΛCDM model, https://doi.org/10.1088/0004-637X/694/1/L83 Astrophys. J.694 L83 [0812.2935] · doi:10.1088/0004-637X/694/1/L83
[6] S. Singh, R. Mandelbaum and S. More, 2015 Intrinsic alignments of SDSS-III BOSS LOWZ sample galaxies, https://doi.org/10.1093/mnras/stv778 Mon. Not. Roy. Astron. Soc.450 2195 [1411.1755] · doi:10.1093/mnras/stv778
[7] S. Singh and R. Mandelbaum, 2016 Intrinsic alignments of BOSS LOWZ galaxies — II. Impact of shape measurement methods, https://doi.org/10.1093/mnras/stw144 Mon. Not. Roy. Astron. Soc.457 2301 [1510.06752] · doi:10.1093/mnras/stw144
[8] A. Heavens, A. Refregier and C. Heymans, 2000 Intrinsic correlation of galaxy shapes: Implications for weak lensing measurements, https://doi.org/10.1046/j.1365-8711.2000.03907.x Mon. Not. Roy. Astron. Soc.319 649 [astro-ph/0005269] · doi:10.1046/j.1365-8711.2000.03907.x
[9] C.M. Hirata and U. Seljak, 2004 Intrinsic alignment-lensing interference as a contaminant of cosmic shear, https://doi.org/10.1103/PhysRevD.82.049901 Phys. Rev. D 70 063526 [Erratum ibid D 82 (2010) 049901] [astro-ph/0406275] · doi:10.1103/PhysRevD.82.049901
[10] R. Mandelbaum et al., 2006 Detection of large scale intrinsic ellipticity-density correlation from the sloan digital sky survey and implications for weak lensing surveys, https://doi.org/10.1111/j.1365-2966.2005.09946.x Mon. Not. Roy. Astron. Soc.367 611 [astro-ph/0509026] · doi:10.1111/j.1365-2966.2005.09946.x
[11] P. Catelan, M. Kamionkowski and R.D. Blandford, 2001 Intrinsic and extrinsic galaxy alignment, https://doi.org/10.1046/j.1365-8711.2001.04105.x Mon. Not. Roy. Astron. Soc.320 L7 [astro-ph/0005470] · doi:10.1046/j.1365-8711.2001.04105.x
[12] J. Blazek, M. McQuinn and U. Seljak, 2011 Testing the tidal alignment model of galaxy intrinsic alignment J. Cosmol. Astropart. Phys.2011 05 010 [1101.4017]
[13] H. Johnston et al., 2019 KiDS+GAMA: Intrinsic alignment model constraints for current and future weak lensing cosmology, https://doi.org/10.1051/0004-6361/201834714 Astron. Astrophys.624 A30 [1811.09598] · doi:10.1051/0004-6361/201834714
[14] C. Heymans et al., 2013 CFHTLenS tomographic weak lensing cosmological parameter constraints: mitigating the impact of intrinsic galaxy alignments, https://doi.org/10.1093/mnras/stt601 Mon. Not. Roy. Astron. Soc.432 2433 [1303.1808] · doi:10.1093/mnras/stt601
[15] R.G. Crittenden, P. Natarajan, U.-L. Pen and T. Theuns, 2001 Spin induced galaxy alignments and their implications for weak lensing measurements, https://doi.org/10.1086/322370 Astrophys. J.559 552 [astro-ph/0009052] · doi:10.1086/322370
[16] B.M. Schäfer and P.M. Merkel, 2017 Angular spectra of the intrinsic galaxy ellipticity field, their observability and their impact on lensing in tomographic surveys, https://doi.org/10.1093/mnras/stx1446 Mon. Not. Roy. Astron. Soc.470 3453 [1506.07366] · doi:10.1093/mnras/stx1446
[17] B. Joachimi and S.L. Bridle, 2010 Simultaneous measurement of cosmology and intrinsic alignments using joint cosmic shear and galaxy number density correlations, https://doi.org/10.1051/0004-6361/200913657 Astron. Astrophys.523 A1 [0911.2454] · doi:10.1051/0004-6361/200913657
[18] EUCLID collaboration, Euclid Definition Study Report, [1110.3193]
[19] LSST collaboration, 2019 LSST: from science drivers to reference design and anticipated data products, https://doi.org/10.3847/1538-4357/ab042c Astrophys. J.873 111 [0805.2366] · doi:10.3847/1538-4357/ab042c
[20] D. Spergel et al., Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report, [1503.03757]
[21] E. Krause, T. Eifler and J. Blazek, 2016 The impact of intrinsic alignment on current and future cosmic shear surveys, https://doi.org/10.1093/mnras/stv2615 Mon. Not. Roy. Astron. Soc.456 207 [1506.08730] · doi:10.1093/mnras/stv2615
[22] N.E. Chisari, C. Dvorkin and F. Schmidt, 2014 Can weak lensing surveys confirm BICEP2?, https://doi.org/10.1103/PhysRevD.90.043527 Phys. Rev. D 90 043527 [1406.4871] · doi:10.1103/PhysRevD.90.043527
[23] F. Schmidt, E. Pajer and M. Zaldarriaga, 2014 Large-scale structure and gravitational waves III: tidal effects, https://doi.org/10.1103/PhysRevD.89.083507 Phys. Rev. D 89 083507 [1312.5616] · doi:10.1103/PhysRevD.89.083507
[24] F. Schmidt, N.E. Chisari and C. Dvorkin, 2015 Imprint of inflation on galaxy shape correlations J. Cosmol. Astropart. Phys.2015 10 032 [1506.02671]
[25] N.E. Chisari, C. Dvorkin, F. Schmidt and D. Spergel, 2016 Multitracing anisotropic non-gaussianity with galaxy shapes, https://doi.org/10.1103/PhysRevD.94.123507 Phys. Rev. D 94 123507 [1607.05232] · doi:10.1103/PhysRevD.94.123507
[26] S. Bridle and L. King, 2007 Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements, https://doi.org/10.1088/1367-2630/9/12/444 New J. Phys.9 444 [0705.0166] · doi:10.1088/1367-2630/9/12/444
[27] J. Blazek, Z. Vlah and U. Seljak, 2015 Tidal alignment of galaxies J. Cosmol. Astropart. Phys.2015 08 015 [1504.02510]
[28] J. Blazek, N. MacCrann, M.A. Troxel and X. Fang, 2019 Beyond linear galaxy alignments, https://doi.org/10.1103/PhysRevD.100.103506 Phys. Rev. D 100 103506 [1708.09247] · doi:10.1103/PhysRevD.100.103506
[29] D.M. Schmitz, C.M. Hirata, J. Blazek and E. Krause, 2018 Time evolution of intrinsic alignments of galaxies J. Cosmol. Astropart. Phys.2018 07 030 [1805.02649]
[30] M.D. Schneider and S. Bridle, 2010 A halo model for intrinsic alignments of galaxy ellipticities, https://doi.org/10.1111/j.1365-2966.2009.15956.x Mon. Not. Roy. Astron. Soc.402 2127 [0903.3870] · doi:10.1111/j.1365-2966.2009.15956.x
[31] B. Joachimi et al., Intrinsic galaxy shapes and alignments II: modelling the intrinsic alignment contamination of weak lensing surveys, [1305.5791]
[32] A. Kiessling et al., 2015 Galaxy alignments: theory, modelling & simulations, https://doi.org/10.1007/s11214-015-0222-3 Space Sci. Rev.193 67 [1504.05546] · doi:10.1007/s11214-015-0222-3
[33] S. Codis et al., 2015 Intrinsic alignment of simulated galaxies in the cosmic web: implications for weak lensing surveys, https://doi.org/10.1093/mnras/stv231 Mon. Not. Roy. Astron. Soc.448 3391 [1406.4668] · doi:10.1093/mnras/stv231
[34] N.E. Chisari et al., 2015 Intrinsic alignments of galaxies in the Horizon-AGN cosmological hydrodynamical simulation, https://doi.org/10.1093/mnras/stv2154 Mon. Not. Roy. Astron. Soc.454 2736 [1507.07843] · doi:10.1093/mnras/stv2154
[35] N.E. Chisari et al., 2016 Redshift and luminosity evolution of the intrinsic alignments of galaxies in Horizon-AGN, https://doi.org/10.1093/mnras/stw1409 Mon. Not. Roy. Astron. Soc.461 2702 [1602.08373] · doi:10.1093/mnras/stw1409
[36] M. Velliscig et al., 2015 The alignment and shape of dark matter, stellar and hot gas distributions in the EAGLE and cosmo-OWLS simulations, https://doi.org/10.1093/mnras/stv1690 Mon. Not. Roy. Astron. Soc.453 721 [1504.04025] · doi:10.1093/mnras/stv1690
[37] M. Velliscig et al., 2015 Intrinsic alignments of galaxies in the EAGLE and cosmo-OWLS simulations, https://doi.org/10.1093/mnras/stv2198 Mon. Not. Roy. Astron. Soc.454 3328 [1507.06996] · doi:10.1093/mnras/stv2198
[38] A. Tenneti, R. Mandelbaum, T. Di Matteo, Y. Feng and N. Khandai, 2014 Galaxy shapes and intrinsic alignments in the MassiveBlack-II simulation, https://doi.org/10.1093/mnras/stu586 Mon. Not. Roy. Astron. Soc.441 470 [1403.4215] · doi:10.1093/mnras/stu586
[39] A. Tenneti et al., 2015 Intrinsic alignments of galaxies in the MassiveBlack-II simulation: analysis of two-point statistics, https://doi.org/10.1093/mnras/stv272 Mon. Not. Roy. Astron. Soc.448 3522 [1409.7297] · doi:10.1093/mnras/stv272
[40] A. Tenneti et al., 2015 Galaxy shapes and alignments in the MassiveBlack-II hydrodynamic and dark matter-only simulations, https://doi.org/10.1093/mnras/stv1625 Mon. Not. Roy. Astron. Soc.453 469 [1505.03124] · doi:10.1093/mnras/stv1625
[41] A. Tenneti, R. Mandelbaum and T. Di Matteo, 2016 Intrinsic alignments of disc and elliptical galaxies in the MassiveBlack-II and Illustris simulations, https://doi.org/10.1093/mnras/stw1823 Mon. Not. Roy. Astron. Soc.462 2668 [1510.07024] · doi:10.1093/mnras/stw1823
[42] A. Tenneti, N.Y. Gnedin and Y. Feng, 2017 Impact of baryonic physics on intrinsic alignments, https://doi.org/10.3847/1538-4357/834/2/169 Astrophys. J.834 169 [1607.07140] · doi:10.3847/1538-4357/834/2/169
[43] N.E. Chisari et al., 2017 Galaxy-halo alignments in the Horizon-AGN cosmological hydrodynamical simulation, https://doi.org/10.1093/mnras/stx1998 Mon. Not. Roy. Astron. Soc.472 1163 [1702.03913] · doi:10.1093/mnras/stx1998
[44] S. Hilbert et al., 2017 Intrinsic alignments of galaxies in the illustris simulation, https://doi.org/10.1093/mnras/stx482 Mon. Not. Roy. Astron. Soc.468 790 [1606.03216] · doi:10.1093/mnras/stx482
[45] DES collaboration, 2018 Dark Energy Survey year 1 results: cosmological constraints from cosmic shear, https://doi.org/10.1103/PhysRevD.98.043528 Phys. Rev. D 98 043528 [1708.01538] · doi:10.1103/PhysRevD.98.043528
[46] H. Hildebrandt et al., 2017 KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing, https://doi.org/10.1093/mnras/stw2805 Mon. Not. Roy. Astron. Soc.465 1454 [1606.05338] · doi:10.1093/mnras/stw2805
[47] C. Hikage et al., 2019 Cosmology from cosmic shear power spectra with subaru hyper suprime-cam first-year data, https://doi.org/10.1093/pasj/psz010 Publ. Astron. Soc. Japan71 43 · doi:10.1093/pasj/psz010
[48] F. Bernardeau, S. Colombi, E. Gaztanaga and R. Scoccimarro, 2002 Large scale structure of the universe and cosmological perturbation theory, https://doi.org/10.1016/S0370-1573(02)00135-7 Phys. Rept.367 1 [astro-ph/0112551] · Zbl 0996.85005 · doi:10.1016/S0370-1573(02)00135-7
[49] J. Carlson, M. White and N. Padmanabhan, 2009 A critical look at cosmological perturbation theory techniques, https://doi.org/10.1103/PhysRevD.80.043531 Phys. Rev. D 80 043531 [0905.0479] · doi:10.1103/PhysRevD.80.043531
[50] R. Scoccimarro and J. Frieman, 1996 Loop corrections in nonlinear cosmological perturbation theory, https://doi.org/10.1086/192306 Astrophys. J. Suppl.105 37 [astro-ph/9509047] · doi:10.1086/192306
[51] D. Baumann, A. Nicolis, L. Senatore and M. Zaldarriaga, 2012 Cosmological non-linearities as an effective fluid J. Cosmol. Astropart. Phys.2012 07 051 [1004.2488]
[52] V. Desjacques, D. Jeong and F. Schmidt, 2018 Large-scale galaxy bias, https://doi.org/10.1016/j.physrep.2017.12.002 Phys. Rept.733 1 [1611.09787] · Zbl 1392.83093 · doi:10.1016/j.physrep.2017.12.002
[53] M.A. Troxel and M. Ishak, 2014 Cross-correlation between cosmic microwave background lensing and galaxy intrinsic alignment as a contaminant to gravitational lensing cross-correlated probes of the universe, https://doi.org/10.1103/PhysRevD.89.063528 Phys. Rev. D 89 063528 [1401.7051] · doi:10.1103/PhysRevD.89.063528
[54] A. Hall and A. Taylor, 2014 Intrinsic alignments in the cross-correlation of cosmic shear and CMB weak lensing, https://doi.org/10.1093/mnrasl/slu094 Mon. Not. Roy. Astron. Soc.443 L119 [1401.6018] · doi:10.1093/mnrasl/slu094
[55] N.E. Chisari, J. Dunkley, L. Miller and R. Allison, 2015 Contamination of early-type galaxy alignments to galaxy lensing-CMB lensing cross-correlation, https://doi.org/10.1093/mnras/stv1655 Mon. Not. Roy. Astron. Soc.453 682 [1507.03906] · doi:10.1093/mnras/stv1655
[56] P. Larsen and A. Challinor, 2016 Intrinsic alignment contamination to CMB lensing-galaxy weak lensing correlations from tidal torquing, https://doi.org/10.1093/mnras/stw1645 Mon. Not. Roy. Astron. Soc.461 4343 [1510.02617] · doi:10.1093/mnras/stw1645
[57] C.M. Hirata, 2009 Tidal alignments as a contaminant of redshift space distortions, https://doi.org/10.1111/j.1365-2966.2009.15353.x Mon. Not. Roy. Astron. Soc.399 1074 [0903.4929] · doi:10.1111/j.1365-2966.2009.15353.x
[58] E. Krause and C.M. Hirata, 2011 Tidal alignments as a contaminant of the galaxy bispectrum, https://doi.org/10.1111/j.1365-2966.2010.17638.x Mon. Not. Roy. Astron. Soc.410 2730 [1004.3611] · doi:10.1111/j.1365-2966.2010.17638.x
[59] D. Martens, C.M. Hirata, A.J. Ross and X. Fang, 2018 A radial measurement of the galaxy tidal alignment magnitude with BOSS data, https://doi.org/10.1093/mnras/sty1100 Mon. Not. Roy. Astron. Soc.478 711 [1802.07708] · doi:10.1093/mnras/sty1100
[60] A. Obuljen, N. Dalal and W.J. Percival, 2019 Anisotropic halo assembly bias and redshift-space distortions J. Cosmol. Astropart. Phys.2019 10 020 [1906.11823] · Zbl 1515.85019
[61] V. Desjacques, D. Jeong and F. Schmidt, 2018 The galaxy power spectrum and bispectrum in redshift space J. Cosmol. Astropart. Phys.2018 12 035 [1806.04015] · Zbl 1536.83163
[62] B. Joachimi, S. Singh and R. Mandelbaum, 2015 Detection of spatial correlations of fundamental plane residuals and cosmological implications, https://doi.org/10.1093/mnras/stv1962 Mon. Not. Roy. Astron. Soc.454 478 [1504.02662] · doi:10.1093/mnras/stv1962
[63] S. Ciarlariello, R. Crittenden and F. Pace, 2015 Intrinsic size correlations in weak lensing, https://doi.org/10.1093/mnras/stv447 Mon. Not. Roy. Astron. Soc.449 2059 [1412.4606] · doi:10.1093/mnras/stv447
[64] S. Ciarlariello and R. Crittenden, 2016 Modelling the impact of intrinsic size and luminosity correlations on magnification estimation, https://doi.org/10.1093/mnras/stw2052 Mon. Not. Roy. Astron. Soc.463 740 [1607.08784] · doi:10.1093/mnras/stw2052
[65] N.E. Chisari et al., 2019 Modelling baryonic feedback for survey cosmology, https://doi.org/10.21105/astro.1905.06082 Open J. Astrophys. [1905.06082] · doi:10.21105/astro.1905.06082
[66] Z. Vlah, E. Chisari and F. Schmidt, in preparation
[67] M. Mirbabayi, F. Schmidt and M. Zaldarriaga, 2015 Biased Tracers and Time Evolution J. Cosmol. Astropart. Phys.2015 07 030 [1412.5169]
[68] J.J.M. Carrasco, M.P. Hertzberg and L. Senatore, 2012 The effective field theory of cosmological large scale structures J. High Energy Phys. JHEP09(2012)082 [1206.2926] · Zbl 1397.83211 · doi:10.1007/JHEP09(2012)082
[69] S. Foreman and L. Senatore, 2016 The EFT of large scale structures at all redshifts: analytical predictions for lensing J. Cosmol. Astropart. Phys.2016 04 033 [1503.01775]
[70] C. Modi, M. White and Z. Vlah, 2017 Modeling CMB lensing cross correlations with CLEFT J. Cosmol. Astropart. Phys.2017 08 009 [1706.03173]
[71] N.E. Chisari and C. Dvorkin, 2013 Cosmological information in the intrinsic alignments of luminous red galaxies J. Cosmol. Astropart. Phys.2013 12 029 [1308.5972]
[72] E. Krause and C.M. Hirata, 2011 Tidal alignments as a contaminant of the galaxy bispectrum, https://doi.org/10.1111/j.1365-2966.2010.17638.x Mon. Not. Roy. Astron. Soc.410 2730 [1004.3611] · doi:10.1111/j.1365-2966.2010.17638.x
[73] T. Fujita et al., Very massive tracers and higher derivative biases, [1609.00717] · Zbl 1489.83088
[74] T. Lazeyras and F. Schmidt, 2019 A robust measurement of the first higher-derivative bias of dark matter halos J. Cosmol. Astropart. Phys.2019 11 041 [1904.11294]
[75] M.M. Abidi and T. Baldauf, 2018 Cubic halo bias in eulerian and lagrangian space J. Cosmol. Astropart. Phys.2018 07 029 [1802.07622]
[76] J.R. Pritchard, S.R. Furlanetto and M. Kamionkowski, 2007 Galaxy surveys, inhomogeneous reionization and dark energy, https://doi.org/10.1111/j.1365-2966.2006.11131.x Mon. Not. Roy. Astron. Soc.374 159 [astro-ph/0604358] · doi:10.1111/j.1365-2966.2006.11131.x
[77] P. Coles and P. Erdogdu, 2007 Scale-dependent Galaxy Bias J. Cosmol. Astropart. Phys.2007 10 007 [0706.0412]
[78] A. Pontzen, 2014 Scale-dependent bias in the baryonic-acoustic-oscillation-scale intergalactic neutral hydrogen, https://doi.org/10.1103/PhysRevD.89.083010 Phys. Rev. D 89 083010 [1402.0506] · doi:10.1103/PhysRevD.89.083010
[79] F. Schmidt and F. Beutler, 2017 Imprints of reionization in galaxy clustering, https://doi.org/10.1103/PhysRevD.96.083533 Phys. Rev. D 96 083533 [1705.07843] · doi:10.1103/PhysRevD.96.083533
[80] M. McQuinn and A. D’Aloisio, 2018 The observable 21 cm signal from reionization may be perturbative J. Cosmol. Astropart. Phys.2018 10 016 [1806.08372]
[81] G. Cabass and F. Schmidt, 2019 A new scale in the bias expansion J. Cosmol. Astropart. Phys.2019 05 031 [1812.02731]
[82] P. McDonald and A. Roy, 2009 Clustering of dark matter tracers: generalizing bias for the coming era of precision LSS J. Cosmol. Astropart. Phys.2009 08 020 [0902.0991]
[83] J. Sakurai and J. Napolitano, 2011 Modern quantum mechanics, Addison-Wesley, U.S.A.
[84] R. Angulo, M. Fasiello, L. Senatore and Z. Vlah, 2015 On the statistics of biased tracers in the effective field theory of large scale structures J. Cosmol. Astropart. Phys.2015 09 029 [1503.08826]
[85] M. Peloso and M. Pietroni, 2013 Galilean invariance and the consistency relation for the nonlinear squeezed bispectrum of large scale structure J. Cosmol. Astropart. Phys.2013 05 031 [1302.0223]
[86] A. Kehagias and A. Riotto, 2013 Symmetries and consistency relations in the large scale structure of the universe, https://doi.org/10.1016/j.nuclphysb.2013.05.009 Nucl. Phys. B 873 514 [1302.0130] · Zbl 1282.85004 · doi:10.1016/j.nuclphysb.2013.05.009
[87] P. Creminelli, J. Noreña, M. Simonović and F. Vernizzi, 2013 Single-field consistency relations of large scale structure J. Cosmol. Astropart. Phys.2013 12 025 [1309.3557]
[88] L. Senatore and M. Zaldarriaga, 2015 The IR-resummed effective field theory of large scale structures J. Cosmol. Astropart. Phys.2015 02 013 [1404.5954]
[89] Z. Vlah, M. White and A. Aviles, 2015 A Lagrangian effective field theory J. Cosmol. Astropart. Phys.2015 09 014 [1506.05264]
[90] Z. Vlah, U. Seljak, M.Y. Chu and Y. Feng, 2016 Perturbation theory, effective field theory and oscillations in the power spectrum J. Cosmol. Astropart. Phys.2016 03 057 [1509.02120]
[91] Z. Ding et al., 2018 Theoretical systematics of future Baryon Acoustic Oscillation Surveys, https://doi.org/10.1093/mnras/sty1413 Mon. Not. Roy. Astron. Soc.479 1021 [1708.01297] · doi:10.1093/mnras/sty1413
[92] T. Baldauf, M. Mirbabayi, M. Simonoviś and M. Zaldarriaga, 2015 Equivalence principle and the baryon acoustic peak, https://doi.org/10.1103/PhysRevD.92.043514 Phys. Rev. D 92 043514 [1504.04366] · doi:10.1103/PhysRevD.92.043514
[93] D. Blas, M. Garny, M.M. Ivanov and S. Sibiryakov, 2016 Time-sliced perturbation theory II: baryon acoustic oscillations and infrared resummation J. Cosmol. Astropart. Phys.2016 07 028 [1605.02149]
[94] M. Peloso and M. Pietroni, 2017 Galilean invariant resummation schemes of cosmological perturbations J. Cosmol. Astropart. Phys.2017 01 056 [1609.06624] · Zbl 1515.83427
[95] M.M. Ivanov and S. Sibiryakov, 2018 Infrared resummation for biased tracers in redshift space J. Cosmol. Astropart. Phys.2018 07 053 [1804.05080]
[96] V. Assassi, D. Baumann, D. Green and M. Zaldarriaga, 2014 Renormalized halo bias J. Cosmol. Astropart. Phys.2014 08 056 [1402.5916]
[97] F. Schmidt and D. Jeong, 2012 Large-scale structure with gravitational waves II: shear, https://doi.org/10.1103/PhysRevD.86.083513 Phys. Rev. D 86 083513 [1205.1514] · doi:10.1103/PhysRevD.86.083513
[98] E. van Uitert and B. Joachimi, 2017 Intrinsic alignment of redMaPPer clusters: cluster shape-matter density correlation, https://doi.org/10.1093/mnras/stx756 Mon. Not. Roy. Astron. Soc.468 4502 [1701.02307] · doi:10.1093/mnras/stx756
[99] C. Georgiou et al., 2019 The dependence of intrinsic alignment of galaxies on wavelength using KiDS and GAMA, https://doi.org/10.1051/0004-6361/201834219 Astron. Astrophys.622 A90 [1809.03602] · doi:10.1051/0004-6361/201834219
[100] C. Georgiou et al., 2019 GAMA+KiDS: Alignment of galaxies in galaxy groups and its dependence on galaxy scale, https://doi.org/10.1051/0004-6361/201935810 Astron. Astrophys.628 A31 [1905.00370] · doi:10.1051/0004-6361/201935810
[101] K.C. Chan, R. Scoccimarro and R.K. Sheth, 2012 Gravity and large-scale non-local bias, https://doi.org/10.1103/PhysRevD.85.083509 Phys. Rev. D 85 083509 [1201.3614] · doi:10.1103/PhysRevD.85.083509
[102] T. Baldauf, U. Seljak, V. Desjacques and P. McDonald, 2012 Evidence for quadratic tidal tensor bias from the halo bispectrum, https://doi.org/10.1103/PhysRevD.86.083540 Phys. Rev. D 86 083540 [1201.4827] · doi:10.1103/PhysRevD.86.083540
[103] A. Eggemeier, R. Scoccimarro and R.E. Smith, 2019 Bias loop corrections to the galaxy bispectrum, https://doi.org/10.1103/PhysRevD.99.123514 Phys. Rev. D 99 123514 [1812.03208] · doi:10.1103/PhysRevD.99.123514
[104] T. Okumura, T. Nishimichi, K. Umetsu and K. Osato, Intrinsic alignments and splashback radius of dark matter halos from cosmic density and velocity fields, [1706.08860]
[105] T. Okumura, A. Taruya and T. Nishimichi, 2019 Intrinsic alignment statistics of density and velocity fields at large scales: Formulation, modeling and baryon acoustic oscillation features, https://doi.org/10.1103/PhysRevD.100.103507 Phys. Rev. D 100 103507 [1907.00750] · doi:10.1103/PhysRevD.100.103507
[106] F. Schmidt and D. Jeong, 2012 Cosmic rulers Phys. Rev. D 86 083527 · doi:10.1103/PhysRevD.86.083527
[107] L. Senatore, 2015 Bias in the effective field theory of large scale structures J. Cosmol. Astropart. Phys.2015 11 007 [1406.7843]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.