×

Energy conservation for the nonhomogeneous incompressible ideal Hall-MHD equations. (English) Zbl 1461.76555

Summary: In this paper, we study the energy conservation for the nonhomogeneous incompressible ideal Hall-magnetohydrodynamic system. Three types of sufficient conditions are obtained. Precisely, the first one provides \(\rho , u, P\), and \(b\) with sufficient regularity to ensure the local energy conservation. The second one removes the regularity condition on \(P\) while requires \(L^p\) regularity on the spatial gradient of the density \(\nabla \rho\) and \(L^r\) regularity on \(\rho_t\). The last one removes the regularity condition on \(\rho_t\) while requires certain time regularity on the velocity field \(u\). Our main strategy relies on commutator estimates in the work of P. Constantin et al. [Commun. Math. Phys. 165, No. 1, 207–209 (1994; Zbl 0818.35085)].
©2021 American Institute of Physics

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
35Q35 PDEs in connection with fluid mechanics

Citations:

Zbl 0818.35085
Full Text: DOI

References:

[1] Forbes, T. G., Magnetic reconnection in solar flares, Geophys. Astrophys. Fluid Dyn., 62, 15-36 (1991) · doi:10.1080/03091929108229123
[2] Homann, H.; Grauer, R., Bifurcation analysis of magnetic reconnection in Hall-MHD systems, Physica D, 208, 59-72 (2005) · Zbl 1154.76392 · doi:10.1016/j.physd.2005.06.003
[3] Balbus, S. A.; Terquem, C., Linear analysis of the Hall effect in protostellar disks, Astrophys. J., 552, 235-247 (2001) · doi:10.1086/320452
[4] Shalybkov, D.; Urpin, V., The Hall effect and the decay of magnetic fields, Astron. Astrophys., 321, 685-690 (1997)
[5] Mininni, P. D.; Gòmez, D. O.; Mahajan, S. M., Dynamo action in magnetohydrodynamic and Hall magnetohydrodynamics, Astrophys. J., 587, 472-481 (2003) · doi:10.1086/368181
[6] Acheritogaray, M.; Degond, P.; Frouvelle, A.; Liu, J.-G., Kinetic formulation and global existence for the Hall-magneto-hydrodynamics system, Kinet. Relat. Models, 4, 901-918 (2011) · Zbl 1251.35076 · doi:10.3934/krm.2011.4.901
[7] Chae, D.; Degond, P.; Liu, J.-G., Well-posedness for Hall-magnetohydrodynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31, 555-565 (2014) · Zbl 1297.35064 · doi:10.1016/j.anihpc.2013.04.006
[8] Jiang, Z.; Zhu, M., Regularity criteria for the 3D generalized MHD and Hall-MHD systems, Bull. Malays. Math. Sci. Soc., 41, 105-122 (2018) · Zbl 1383.35164 · doi:10.1007/s40840-015-0243-9
[9] Chae, D.; Lee, J., On the blow-up criterion and small data global existence for the Hall-magneto-hydrodynamics, J. Differ. Equations, 256, 3835-3858 (2014) · Zbl 1295.35122 · doi:10.1016/j.jde.2014.03.003
[10] Fan, J.; Huang, S.; Nakamura, G., Well-posedness for the axisymmetric incompressible viscous Hallmagnetohydrodynamic equations, Appl. Math. Lett., 26, 963-967 (2013) · Zbl 1315.35164 · doi:10.1016/j.aml.2013.04.008
[11] Wan, R.; Zhou, Y., On global existence, energy decay and blow-up criteria for the Hall-MHD system, J. Differ. Equations, 259, 5982-6008 (2015) · Zbl 1328.35185 · doi:10.1016/j.jde.2015.07.013
[12] Weng, S., Space-time decay estimates for the incompressible viscous resistive MHD and Hall-MHD equations, J. Funct. Anal., 270, 2168-2187 (2016) · Zbl 1347.35207 · doi:10.1016/j.jfa.2016.01.021
[13] Wu, H., Strong solution to the incompressible magnetohydrodynamic equations with vacuum, Comput. Math. Appl., 61, 2742-2753 (2011) · Zbl 1221.76253 · doi:10.1016/j.camwa.2011.03.033
[14] Huang, X.; Wang, Y., Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differ. Equations, 254, 511-527 (2013) · Zbl 1253.35121 · doi:10.1016/j.jde.2012.08.029
[15] Fan, J.; Li, F., Global strong solutions to the nonhomogeneous incompressible MHD equations in a bounded domain, Nonlinear Anal. Real World Appl., 46, 1-11 (2019) · Zbl 1412.35251 · doi:10.1016/j.nonrwa.2018.08.010
[16] Gala, S.; Ragusa, M., On the regularity criterion of weak solutions for the 3D MHD equations, Z. Angew. Math. Phys., 68, 140 (2017) · Zbl 1379.35240 · doi:10.1007/s00033-017-0890-9
[17] Jia, X.; Zhou, Y., Regularity criteria for the 3D MHD equations involving partial components, Nonlinear Anal. Real World Appl., 13, 410-418 (2012) · Zbl 1239.35032 · doi:10.1016/j.nonrwa.2011.07.055
[18] Cao, C.; Wu, J., Two regularity criteria for the 3D MHD equations, J. Differ. Equations, 248, 2263-2274 (2010) · Zbl 1190.35046 · doi:10.1016/j.jde.2009.09.020
[19] Hu, X.; Wang, D., Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197, 203-238 (2010) · Zbl 1198.35197 · doi:10.1007/s00205-010-0295-9
[20] Ou, Y.; Shi, P.; Wittwer, P., Large time behaviors of strong solutions to magnetohydrodynamic equations with free boundary and degenerate viscosity, J. Math. Phys., 59, 081510 (2018) · Zbl 1395.76109 · doi:10.1063/1.5038584
[21] Gao, Z.; Tan, Z.; Wu, G., Energy dissipation for weak solution of incompressible MHD equations, Acta Math. Sci. Ser. B, 33, 865-871 (2013) · Zbl 1299.35234 · doi:10.1016/s0252-9602(13)60046-6
[22] Guo, S.; Tan, Z., Local 4/5-law and energy dissipation anomaly in turbulence of incompressible MHD equations, Z. Angew. Math. Phys., 67, 147 (2016) · Zbl 1358.35117 · doi:10.1007/s00033-016-0736-x
[23] Wu, Z.; Tan, Z., Regularity and energy dissipation for the nonhomogeneous incompressible MHD equations, Sci. Sin. Math., 49, 1967-1978 (2019) · Zbl 1499.35153 · doi:10.1360/SSM-2019-0203
[24] Wang, Y.; Zuo, B., Energy and cross-helicity conservation for the three-dimensional ideal MHD equations in a bounded domain, J. Differ. Equations, 268, 4079-4101 (2020) · Zbl 1434.35124 · doi:10.1016/j.jde.2019.10.045
[25] Onsager, L., Statistical hydrodynamics, Nuovo Cimento, 6, 279-287 (1949) · doi:10.1007/bf02780991
[26] Cheskidov, A.; Constantin, P.; Friedlander, S.; Shvydkoy, R., Energy conservation and Onsager’s conjecture for the Euler equations, Nonlinearity, 21, 1233-1252 (2008) · Zbl 1138.76020 · doi:10.1088/0951-7715/21/6/005
[27] Constantin, P.; Weinan, E.; Titi, E. S., Onsager’s conjecture on the energy conservation for solutions of Euler’s equation, Commun. Math. Phys., 165, 207-209 (1994) · Zbl 0818.35085 · doi:10.1007/bf02099744
[28] Duchon, J.; Robert, R., Inertial energy dissipation for weak solutions of imcompressible Euler and Navier-Stokes equations, Nonlinearity, 13, 249-255 (2000) · Zbl 1009.35062 · doi:10.1088/0951-7715/13/1/312
[29] Eyink, G. L., Energy dissipation without viscosity in ideal hydrodynamics: I. Fourier analysis and local energy transfer, Physica D, 78, 222-240 (1994) · Zbl 0817.76011 · doi:10.1016/0167-2789(94)90117-1
[30] Feireisl, E.; Gwiazda, P.; Świerczewska-Gwiazda, A.; Wiedemann, E., Regularity and energy conservation for the compressible Euler equations, Arch. Ration. Mech. Anal., 223, 1375-1395 (2017) · Zbl 1365.35113 · doi:10.1007/s00205-016-1060-5
[31] Chen, R. M.; Yu, C., Onsager’s energy conservation for inhomogeneous Euler equations, J. Math. Pures Appl., 131, 1-16 (2019) · Zbl 1444.76023 · doi:10.1016/j.matpur.2019.02.003
[32] Evans, L., Partial Differential Equations (1964), Intersxcience Publishers · Zbl 0126.00207
[33] Feireisl, E., Dynamics of Viscous Compressible Fluids (2004), Oxford University Press: Oxford University Press, New York · Zbl 1080.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.