×

Implementation of the exp-function approach for the solution of KdV equation with dual power law nonlinearity. (English) Zbl 1513.35476

Summary: The aim of this manuscript is to find the analytical solutions of the Korteweg-de Vries (KdV) equation with dual power law nonlinearity using the exp-function method. The KdV equation is used to study the shallow water wave behavior of long wavelengths and small amplitude. With the help of the exp-function method, a variety of exact wave solutions of the KdV equation are obtained including kink, anti-kink, and bell-shaped traveling wave solutions. The various kinds of solutions to the considered nonlinear KdV equation may help to explore the relevant nonlinear phenomena in fluid dynamics. The presented results are novel and the KdV equation with dual power law nonlinearity has been evaluated using the presented technique for the first time in this work. In addition, some of the exact solutions have been shown by contour planes, 3D plots, and 2D graphics for visualizing the underlying dynamics of the results.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35C07 Traveling wave solutions
Full Text: DOI

References:

[1] Ablowitz MJ, Clarkson PA (1991) Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, Cambridge, p 149 · Zbl 0762.35001
[2] Ahmad, S.; Ullah, A.; Akgül, A.; De la Sen, M., A novel homotopy perturbation method with applications to nonlinear fractional order KdV and Burger equation with exponential-decay kernel, J Funct Spaces, 2021, 8770488 (2021) · Zbl 1475.35380
[3] Ahmad, S.; Ullah, A.; Akgül, A.; Jarad, F., A hybrid analytical technique for solving nonlinear fractional order PDEs of power law kernel: application to KdV and Fornberg-Witham equations, AIMS Math, 7, 5, 9389-9404 (2022) · doi:10.3934/math.2022521
[4] Akram G, Sajid N (2021) The investigation of exact solutions of Korteweg-de Vries equation with dual power law nonlinearity using the \(\text{exp}_a\) and exp \((-\Phi (\xi ))\) methods. Int J Comput Math 99:629-640 · Zbl 1499.35533
[5] Akram, G.; Sajid, N., The investigation of exact solutions of Korteweg-de vries equation with dual power law nonlinearity using the \(\text{ exp}_a\) and exp \((-\Phi (\xi ))\) methods, Int J Comput Math, 99, 3, 629-640 (2022) · Zbl 1499.35533 · doi:10.1080/00207160.2021.1923014
[6] Arshed, S.; Javid, A.; Raza, N.; Baskonus, HM, Chiral solitons of (2+1)-dimensional stochastic chiral nonlinear Schrodinger equation, Int J Geom Methods Mod Phys (2022) · Zbl 1540.35095 · doi:10.1142/S0219887822501493
[7] Asjad, MI; Ur Rehman, H.; Ishfaq, Z.; Awrejcewicz, J.; Akgül, A.; Riaz, MB, On soliton solutions of perturbed Boussinesq and KdV-Caudery-Dodd-Gibbon equations, Coatings, 11, 11, 1429 (2021) · doi:10.3390/coatings11111429
[8] Bai, CL; Zhao, H., Generalized extended tanh-function method and its application, Chaos Solitons Fractals, 27, 4, 1026-1035 (2006) · Zbl 1088.35534 · doi:10.1016/j.chaos.2005.04.069
[9] Baskonus, HM; Mahmud, AA; Muhamad, KA; Tanriverdi, T., A study on Caudrey-Dodd-Gibbon-Sawada-Kotera partial differential equation, Math Methods Appl Sci, 45, 8737-8753 (2022) · Zbl 1527.34035 · doi:10.1002/mma.8259
[10] Batool, F.; Akram, G., On the solitary wave dynamics of complex Ginzburg-Landau equation with cubic nonlinearity, Opt Quant Electron, 49, 4, 129 (2017) · doi:10.1007/s11082-017-0973-z
[11] Biswas, A.; Alqahtani, RT, Chirp-free bright optical solitons for perturbed Gerdjikov-Ivanov equation by semi-inverse variational principle, Optik, 147, 72-76 (2017) · doi:10.1016/j.ijleo.2017.08.019
[12] Bulut, H.; Sulaiman, TA; Baskonus, HM, New solitary and optical wave structures to the Korteweg-de Vries equation with dual-power law nonlinearity, Opt Quant Electron, 48, 12, 1-14 (2016) · doi:10.1007/s11082-016-0831-4
[13] Chen, Y.; Wang, Q., Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic functions solutions to \((1+1)\)-dimensional dispersive long wave equation, Chaos Solitons Fractal, 24, 745-757 (2005) · Zbl 1072.35509 · doi:10.1016/j.chaos.2004.09.014
[14] Darvishi, MT; Arbabi, S.; Najafi, M.; Wazwaz, AM, Traveling wave solutions of a (2+1)-dimensional Zakharov-like equation by the first integral method and the tanh method, Optik, 127, 6312-6321 (2016) · doi:10.1016/j.ijleo.2016.04.033
[15] Dehghan, M.; Heris, JM; Saadatmandi, A., Application of semi-analytic methods for the Fitzhugh-Nagumo equation which models the transmission of nerve impulses, Math Methods Appl Sci, 33, 11, 1384-1398 (2010) · Zbl 1196.35025
[16] Dehghan, M.; Manafian, J.; Saadatmandi, A., Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer Methods Partial Differ Equ, 26, 448-479 (2010) · Zbl 1185.65187 · doi:10.1002/num.20460
[17] Dehghan, M.; Manafian, J.; Saadatmandi, A., Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics, Int J Numer Methods Heat Fluid Flow, 21, 736-753 (2011) · doi:10.1108/09615531111148482
[18] Ekici, M.; Zhou, Q.; Sonmezoglu, A.; Manafian, J.; Mirzazadeh, M., The analytical study of solitons to the nonlinear Schrodinder equation with resonant nonlinearity, Optik, 130, 378-382 (2017) · doi:10.1016/j.ijleo.2016.10.098
[19] Gulalai, SA; Rihan, FA; Ahmad, S.; Rihan, FA; Ullah, A.; Al-Mdallal, QM; Akgül, A., Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative, AIMS Math, 7, 5, 7847-7865 (2022) · doi:10.3934/math.2022439
[20] He, JH; Wu, XH, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30, 3, 700-708 (2006) · Zbl 1141.35448 · doi:10.1016/j.chaos.2006.03.020
[21] Inc, M.; Akgül, A.; Kiliçman, A., A novel method for solving KdV equation based on reproducing kernel Hilbert space method, Abstr Appl Anal, 2013 (2013) · Zbl 1266.65178
[22] Luo, XG; Wu, QB; Zhang, BQ, Revisit on partial solutions in the Adomian decomposition method: solving heat and wave equations, J Math Anal Appl, 321, 353-363 (2006) · Zbl 1103.65106 · doi:10.1016/j.jmaa.2005.08.043
[23] Manafian, J., On the complex structures of the Biswas-Milovic equation for power, parabolic and dual parabolic law nonlinearities, Eur Phys J Plus, 130, 1-20 (2015) · doi:10.1140/epjp/i2015-15255-5
[24] Mirzazadeh, M.; Eslami, M.; Zerrad, E.; Mahmood, MF; Biswas, A.; Belic, M., Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoullis equation approach, Nonlinear Dyn, 81, 1933-1949 (2015) · Zbl 1348.78023 · doi:10.1007/s11071-015-2117-y
[25] Postolache, M.; Gurefe, Y.; Sommezoglu, A.; Ekici, M.; Misirli, E., Extended trial equation method and application to some nonlinear problems, Bull Univ Politehica Bucharest Ser A, 76, 2, 3-12 (2014) · Zbl 1313.35275
[26] Sajid, N.; Akram, G., The application of the exp \((-\Phi (\xi ))\)-expansion method for finding the exact solutions of two integrable equations, Math Probl Eng, 2018, 1-10 (2018) · Zbl 1427.35010
[27] Sajid, N.; Akram, G., Optical solitons with full nonlinearity for the conformable space-time fractional Fokas-Lenells equation, Optik, 196, 16, 163131 (2019) · doi:10.1016/j.ijleo.2019.163131
[28] Sajid, N.; Akram, G., Solitary dynamics of longitudinal wave equation arises in magneto-electro-elastic circular rod, Mod Phys Lett B, 35, 2150086 (2020) · doi:10.1142/S021798492150086X
[29] Sajid, N.; Akram, G., Novel solutions of Biswas-Arshed equation by newly \(\Phi^6\)-model expansion method, Optik, 211, 164564 (2020) · doi:10.1016/j.ijleo.2020.164564
[30] Sajid, N.; Akram, G., Dark, singular, bright, rational and periodic solutions of the space-time fractional Fokas-Lenells equation by the \(\Phi^6\)-model expansion method, Optik, 228, 165843 (2021) · doi:10.1016/j.ijleo.2020.165843
[31] Salas, A.; Kumar, S.; Yildirim, A.; Biswas, A., Cnoidal waves, solitary waves and painleve analysis of the 5th order KdV equation with dual-power law nonlinearity, Proc Roman Acad Ser A, 14, 1, 28-34 (2013)
[32] Triki, H.; Wazwaz, AM, Bright and dark soliton solutions for a K(m, n) equation with t-dependent coefficients, Phys Lett A, 373, 25, 2162-2165 (2009) · Zbl 1229.35232 · doi:10.1016/j.physleta.2009.04.029
[33] Wazwaz, AM, A sine-cosine method for handling nonlinear wave equations, Math Comput Model, 40, 499-508 (2004) · Zbl 1112.35352 · doi:10.1016/j.mcm.2003.12.010
[34] Whithan, GB, Linear and nonlinear waves (1974), New York: Wiley, New York · Zbl 0373.76001
[35] Wu, XH; He, JH, Solitary solutions, periodic solutions and compacton-like solutions using the Exp-function method, Comput Math Appl, 54, 966-986 (2007) · Zbl 1143.35360 · doi:10.1016/j.camwa.2006.12.041
[36] Zhang, H., New application of the \((\frac{G^{\prime }}{G})-\) expansion method, Commun Nonlinear Sci Numer Simul, 14, 3220-3225 (2009) · Zbl 1221.35380 · doi:10.1016/j.cnsns.2009.01.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.