×

Invariance of sets under mutational inclusions on metric spaces. (English) Zbl 1516.30079

Summary: This paper is devoted to the invariance of time dependent sets under dynamical systems defined on a metric space. In the absence of vector structure, evolutions are described by the so-called mutational inclusions, that extend differential inclusions of the classical Euclidean framework to the one of general metric spaces. The main difficulty we have to overcome is the absence of local compactness of the constraints implying that the distance between a point and a closed set, in general, is not realized. The fairy technical proof we propose has a potential to be applicable also to problems of invariance of closed sets under various evolution laws. The reason to seek such generality lies in the desire to have universal results that can be applied to various settings, as for instance to classical differential inclusions, to continuity inclusions in the Wasserstein spaces, the controlled transport equation in the space of Radon measures or morphological systems in the space of closed subsets of a Banach space. The obtained results are illustrated by the example of dynamics described by a non-homogeneous controlled continuity equation on the space of Radon measures.

MSC:

30L99 Analysis on metric spaces
34K09 Functional-differential inclusions
Full Text: DOI

References:

[1] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs (2000), Oxford University Press, New York: The Clarendon Press, Oxford University Press, New York · Zbl 0957.49001
[2] Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edn. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (2008) · Zbl 1145.35001
[3] Aubin, J.-P.: Viability Theory. Systems and Control: Foundations and Applications. Birkhäuser, Boston, MA, (1991) · Zbl 0755.93003
[4] Aubin, J-P, Mutational equations in metric spaces, Set-Valued Anal., 1, 1, 3-46 (1993) · Zbl 0784.34015 · doi:10.1007/BF01039289
[5] Aubin, J.-P.: Mutational and Morphological Analysis. Systems and Control: Foundations and Applications. Birkhäuser, Boston, MA, (1999). Tools for shape evolution and morphogenesis · Zbl 0923.58005
[6] Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Systems and Control: Foundations and Applications, vol. 2. Birkhäuser, Boston, MA (1990) · Zbl 0713.49021
[7] Badreddine, Z.; Frankowska, H., Solutions to Hamilton-Jacobi equation on a Wasserstein space, Calc. Var. Partial Differ. Equ., 61, 1, 41 (2022) · Zbl 1479.49009 · doi:10.1007/s00526-021-02113-3
[8] Badreddine, Z.; Frankowska, H., Viability and invariance of systems on metric spaces, Nonlinear Anal., 225 (2022) · Zbl 1498.49044 · doi:10.1016/j.na.2022.113133
[9] Bogachev, V.I.: Measure Theory, vol. I. II. Springer, Berlin (2007) · Zbl 1120.28001
[10] Cârjă, O., Necula, M., Vrabie, I.I.: Viability, Invariance and Applications. North-Holland Mathematics Studies, vol. 207. Elsevier Science B.V, Amsterdam (2007) · Zbl 1239.34068
[11] Doyen, L., Filippov and invariance theorems for mutational inclusions of tubes, Set-Valued Anal., 1, 3, 289-303 (1993) · Zbl 0813.49021 · doi:10.1007/BF01027639
[12] Duda, S.; Gehrig, E.; Lorenz, T., External ellipsoidal approximations for set evolution equations, J. Optim. Theory Appl., 192, 3, 759-798 (2022) · Zbl 1495.93012 · doi:10.1007/s10957-021-01984-y
[13] Frankowska, H., Lorenz, T.: Filippov’s theorem for mutational inclusions in a metric space. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), (to appear), (2023). Preprint at https://hal.archives-ouvertes.fr/hal-03680046
[14] Frankowska, H.; Plaskacz, S., A measurable upper semicontinuous viability theorem for tubes, Nonlinear Anal., 26, 3, 565-582 (1996) · Zbl 0838.34017 · doi:10.1016/0362-546X(94)00299-W
[15] Frankowska, H.; Plaskacz, S.; Rzeżuchowski, T., Measurable viability theorems and the Hamilton-Jacobi-Bellman equation, J. Differ. Equ., 116, 2, 265-305 (1995) · Zbl 0836.34016 · doi:10.1006/jdeq.1995.1036
[16] Fremlin, D. H.: Measurable functions and almost continuous functions. Manuscripta Math., 33(3-4):387-405, (1980/81) · Zbl 0459.28010
[17] Gautier, S.; Pichard, K., Viability results for mutational equations with delay, Numer. Funct. Anal. Optim., 24, 3-4, 273-284 (2003) · Zbl 1031.34078 · doi:10.1081/NFA-120022922
[18] Gorre, A., Evolutions of tubes under operability constraints, J. Math. Anal. Appl., 216, 1, 1-22 (1997) · Zbl 1008.49004 · doi:10.1006/jmaa.1997.5476
[19] Hu, S., Papageorgiou, N. S.: Handbook of Multivalued Analysis. Vol. II, volume 500 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, Applications (2000) · Zbl 0943.47037
[20] Kloeden, P. E., Lorenz, T.: Nonlocal multi-scale traffic flow models: analysis beyond vector spaces. Bull. Math. Sci. 6(3), 453-514 (2016) · Zbl 1362.35184
[21] Kupka, J.; Prikry, K., The measurability of uncountable unions, Am. Math. Monthly, 91, 2, 85-97 (1984) · Zbl 0533.28010 · doi:10.1080/00029890.1984.11971346
[22] Leese, S. J.: Multifunctions of Souslin type. Bull. Aust. Math. Soc. 11, 395-411 (1974) · Zbl 0287.04005
[23] Leese, S. J.: Set-Valued Functions and Selectors. Doctoral thesis. Keele University, (1974)
[24] Leese, S. J.: Corrigendum: “Multifunctions of Souslin type” (Bull. Austral. Math. Soc. 11 (1974), 395-411). Bull. Austral. Math. Soc., 13(1):159-160, (1975) · Zbl 0301.04005
[25] Lorenz, T., Morphological control problems with state constraints, SIAM J. Control Optim., 48, 8, 5510-5546 (2010) · Zbl 1233.93013 · doi:10.1137/090752183
[26] Lorenz, T.: Mutational Analysis, volume 1996 of Lecture Notes in Mathematics. Springer, Berlin. A joint framework for Cauchy problems in and beyond vector spaces (2010)
[27] Lorenz, T., A viability theorem for set-valued states in a Hilbert space, J. Math. Anal. Appl., 457, 2, 1502-1567 (2018) · Zbl 1377.49015 · doi:10.1016/j.jmaa.2017.08.011
[28] Lorenz, T., Partial differential inclusions of transport type with state constraints, Discrete Contin. Dyn. Syst. Ser. B, 24, 3, 1309-1340 (2019) · Zbl 1410.35296
[29] Maniglia, S., Probabilistic representation and uniqueness results for measure-valued solutions of transport equations, J. Math. Pures Appl., 87, 6, 601-626 (2007) · Zbl 1123.60048 · doi:10.1016/j.matpur.2007.04.001
[30] Murillo Hernández, J. A.: Tangential regularity in the space of directional-morphological transitions. J. Convex Anal. 13(2), 423-441 (2006) · Zbl 1113.34007
[31] Nachbin, L., Sur les algèbres denses de fonctions différentiables sur une variété, C. R. Acad. Sci. Paris, 228, 1549-1551 (1949) · Zbl 0033.37801
[32] Rudin, W., Real and Complex Analysis (1987), New York: McGraw-Hill, New York · Zbl 0925.00005
[33] Stein, E. M., Shakarchi., R.: Real Analysis, volume 3 of Princeton Lectures in Analysis. Princeton University Press, Princeton, NJ. Measure theory, integration, and Hilbert spaces (2005) · Zbl 1081.28001
[34] Wagner, D. H.: Survey of measurable selection theorems. SIAM J. Control Optim. 15(5), 859-903 (1977) · Zbl 0407.28006
[35] Ziemer, W. P.: Weakly Differentiable Functions, volume 120 of Graduate Texts in Mathematics. Springer, New York. Sobolev spaces and functions of bounded variation (1989) · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.