×

Algebraically stable high-order multi-physical property-preserving methods for the regularized long-wave equation. (English) Zbl 07885880

Summary: In this paper, based on the framework of the supplementary variable method, we present two classes of high-order, linearized, structure-preserving algorithms for simulating the regularized long-wave equation. The suggested schemes are as accurate and efficient as the recently proposed schemes in Jiang et al. (2022) [20], but share the nice features in two folds: (i) the first type of schemes conserves the original energy conservation, as opposed to a modified quadratic energy in [20]; (ii) the second type of schemes fills the gap of [20] by constructing high-order linear algorithms that preserve both two invariants of mass and momentum. We discretize the SVM systems by employing the algebraically stable Runge-Kutta method together with the prediction-correction technique in time and the Fourier pseudo-spectral method in space. The implementation benefits from solving the optimization problems subject to PDE constraints. Numerical examples and some comparisons are provided to show the effectiveness, accuracy and performance of the proposed schemes.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Qxx Partial differential equations of mathematical physics and other areas of application
65Lxx Numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] Akrivis, G.; Li, B.; Li, D., Energy-decaying extrapolated RK-SAV methods for the Allen-Cahn and Cahn-Hilliard equations, SIAM J. Sci. Comput., 41, 6, A3703-A3727, 2019 · Zbl 1435.65141
[2] Alexander, M. E.; Morris, J. L., Galerkin methods applied to some model equations for nonlinear dispersive waves, J. Comput. Phys., 30, 428-451, 1979 · Zbl 0407.76014
[3] Antoine, X.; Shen, J.; Tang, Q., Scalar auxiliary variable/Lagrange multiplier based pseudospectral schemes for the dynamics of nonlinear Schrödinger/Gross-Pitaevskii equations, J. Comput. Phys., 437, Article 110328 pp., 2021 · Zbl 07505911
[4] Benjamin, T. B.; Bona, J. L.; Mahony, J. J., Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. A, 227, 47-78, 1972 · Zbl 0229.35013
[5] Bona, J. L.; McKinney, W. R.; Restrepo, J. M., Stable and unstable solitary-wave solutions of the generalized regularized long-wave equation, J. Nonlinear Sci., 10, 603-638, 2000 · Zbl 0972.35131
[6] Brugnano, L.; Iavernaro, F.; Trigiante, D., Hamiltonian boundary value methods (energy preserving discrete line integral methods), J. Numer. Anal. Ind. Appl. Math., 5, 17-37, 2010 · Zbl 1432.65182
[7] Burrage, K.; Butcher, J. C., Stability criteria for implicit Runge-Kutta methods, SIAM J. Numer. Anal., 16, 1, 46-57, 1979 · Zbl 0396.65043
[8] Chang, Q.; Wang, G.; Guo, B., Conservative scheme for a model of nonlinear dispersive waves and its solitary waves induced by boundary motion, J. Comput. Phys., 93, 360-375, 1991 · Zbl 0739.76037
[9] Cheng, Q.; Liu, C.; Shen, J., A new Lagrange multiplier approach for gradient flows, Comput. Methods Appl. Mech. Eng., 367, Article 113070 pp., 2020 · Zbl 1442.65211
[10] Dehghan, M.; Salehi, R., The solitary wave solution of the two-dimensional regularized long-wave equation in fluids and plasmas, Comput. Phys. Commun., 182, 2540-2549, 2011 · Zbl 1263.76047
[11] Du, Q.; Ju, L.; Lu, J., Analysis of fully discrete approximations for dissipative systems and application to time-dependent nonlocal diffusion problems, J. Sci. Comput., 78, 1438-1466, 2019 · Zbl 1419.65058
[12] Frasca-Caccia, G.; Hydon, P. E., Numerical preservation of multiple local conservation laws, Appl. Math. Comput., 403, Article 126203 pp., 2021 · Zbl 1510.65191
[13] Frasca-Caccia, G.; Hydon, P. E., A new technique for preserving conservation laws, Found. Comput. Math., 22, 477-506, 2022 · Zbl 1492.65235
[14] Gong, Y.; Hong, Q.; Wang, Q., Supplementary variable method for thermodynamically consistent partial differential equations, Comput. Methods Appl. Mech. Eng., 381, Article 113746 pp., 2021 · Zbl 1506.74495
[15] Gong, Y.; Zhao, J.; Wang, Q., Arbitrarily high-order linear energy stable schemes for gradient flow models, J. Comput. Phys., 419, Article 109610 pp., 2020 · Zbl 07507221
[16] Guo, B.; Cao, W., The Fourier pseudo-spectral method with a restrain operator for the RLW equation, J. Comput. Phys., 74, 110-126, 1988 · Zbl 0684.65097
[17] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2006, Springer-Verlag: Springer-Verlag Berlin · Zbl 1094.65125
[18] Hong, Q.; Li, J.; Wang, Q., Supplementary variable method for structure-preserving approximations to partial differential equations with deduced equations, Appl. Math. Lett., 110, Article 106576 pp., 2020 · Zbl 1452.65160
[19] Hong, Q.; Wang, Y.; Gong, Y., Optimal error estimate of two linear and momentum-preserving Fourier pseudo-spectral schemes for the RLW equation, Numer. Methods Partial Differ. Equ., 36, 394-417, 2020 · Zbl 07771396
[20] Jiang, C.; Qian, X.; Song, S.; Cui, J., Arbitrary high-order linear structure-preserving schemes for the regularized long-wave equation, Appl. Numer. Math., 174, 89-111, 2022 · Zbl 1487.65166
[21] Jiang, M.; Zhang, Z.; Zhao, J., Improving the accuracy and consistency of the scalar auxiliary variable (SAV) method with relaxation, J. Comput. Phys., 456, Article 110954 pp., 2022 · Zbl 07518095
[22] Koide, S.; Furihata, D., Nonlinear and linear conservative finite difference schemes for regularized long wave equation, Jpn. J. Ind. Appl. Math., 26, 15-40, 2009 · Zbl 1177.65124
[23] Li, X.; Gong, Y.; Zhang, L., Linear high-order energy-preserving schemes for the nonlinear Schrödinger equation with wave operator using the scalar auxiliary variable approach, J. Sci. Comput., 88, 20, 2021 · Zbl 1480.35358
[24] Li, X.; Sheng, Z.; Zhang, L., High-order Lagrange multiplier method for the coupled Klein-Gordon-Schrödinger system, J. Comput. Phys., 493, Article 112456 pp., 2023 · Zbl 07748043
[25] Li, X.; Zhang, L., High-order conservative energy quadratization schemes for the Klein-Gordon-Schrödinger equation, Adv. Comput. Math., 48, 41, 2022 · Zbl 1502.65162
[26] Lu, C.; Huang, W.; Qiu, J., An adaptive moving mesh finite element solution of the regularized long wave equation, J. Sci. Comput., 74, 122-144, 2018 · Zbl 1383.65125
[27] Mei, L.; Chen, Y., Numerical solutions of RLW equation using Galerkin method with extrapolation techniques, Comput. Phys. Commun., 183, 1609-1616, 2012 · Zbl 1305.65210
[28] Miyatake, Y., An energy-preserving exponentially-fitted continuous stage Runge-Kutta method for Hamiltonian systems, BIT Numer. Math., 54, 777-799, 2014 · Zbl 1304.65263
[29] Nocedal, J.; Wright, S. J., Numerical Optimization, 1999, Springer-Verlag: Springer-Verlag New York · Zbl 0930.65067
[30] Olver, P. J., Euler operators and conservation laws of the BBM equation, Math. Proc. Camb. Philos. Soc., 85, 143-160, 1979 · Zbl 0387.35050
[31] Peregrine, D. H., Calculations of the development of an undular bore, J. Fluid Mech., 25, 2, 321-336, 1966
[32] Quispel, G. R.W.; McLaren, D. I., A new class of energy-preserving numerical integration methods, J. Phys. A, 41, Article 045206 pp., 2008 · Zbl 1132.65065
[33] Shen, J.; Tang, T.; Wang, L., Spectral Methods: Algorithms, Analysis and Applications, 2011, Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 1227.65117
[34] Shen, J.; Xu, J.; Yang, J., The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 353, 15, 407-416, 2018 · Zbl 1380.65181
[35] Tang, W.; Sun, Y., Time finite element methods: a unified framework for numerical discretizations of ODEs, Appl. Math. Comput., 219, 2158-2179, 2012 · Zbl 1291.65203
[36] ul Islam, Siraj; Haq, S.; Ali, A., A meshfree method for the numerical solution of the RLW equation, J. Comput. Appl. Math., 223, 997-1012, 2009 · Zbl 1156.65090
[37] Wang, X.; Dai, W.; Guo, S., A conservative linear difference scheme for the 2D regularized long-wave equation, Appl. Math. Comput., 342, 55-70, 2019 · Zbl 1429.65200
[38] Xu, J.; Xie, S.; Fu, H., A two-grid block-centered finite difference method for the nonlinear regularized long wave equation, Appl. Numer. Math., 171, 128-148, 2022 · Zbl 1519.65023
[39] Yang, X.; Ju, L., Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model, Comput. Methods Appl. Mech. Eng., 315, 1, 691-712, 2017 · Zbl 1439.74165
[40] Zhang, H.; Qian, X.; Song, S., Novel high-order energy-preserving diagonally implicit Runge-Kutta schemes for nonlinear Hamiltonian ODEs, Appl. Math. Lett., 102, Article 106091 pp., 2020 · Zbl 1524.65949
[41] Zhao, J., A revisit of the energy quadratization method with a relaxation technique, Appl. Math. Lett., 120, Article 107331 pp., 2021 · Zbl 1498.35538
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.