×

The physisorbate-layer problem arising in kinetic theory of gas-surface interaction. (English) Zbl 07845545

The study considers a half-space problem for a linear kinetic equation describing gas molecules that are physisorbed near a solid surface, relevant to kinetic models of gas-surface interactions as derived by K. Aoki et al. [Phys. Rev. E, 106, No. 3, Article ID 035306, 25 p. (2022; doi:10.1103/PhysRevE.106.035306)]. The equation incorporates a confinement potential near the solid surface and an interaction term between gas molecules and phonons. It is shown that a unique solution exists when the incoming molecular flux is specified at infinity, thereby confirming that the half-space problem functions are suitable as the boundary condition for the Boltzmann equation. Additionally, it is demonstrated that the sequence of approximate solutions used in the proof of existence converges exponentially fast. Numerical results detailing the solution to the half-space problem are also provided.

MSC:

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
35Q20 Boltzmann equations
82B40 Kinetic theory of gases in equilibrium statistical mechanics

References:

[1] Aoki, K., Giovangigli, V.: A kinetic model of reactive crystal surfaces. In: Zhang, Y., Emerson, D.R., Lockerby, D., Wu, L. (eds.) 31st International Symposium on Rarefied Gas Dynamics, AIP Conference Proceedings 2132, p. 130003, AIP, Melville, NY (2019)
[2] Aoki, K.; Giovangigli, V., Kinetic model of adsorption on crystal surfaces, Phys. Rev. E, 99, 2019 · doi:10.1103/PhysRevE.99.052137
[3] Aoki, K.; Giovangigli, V., Kinetic theory of chemical reactions on crystal surfaces, Physica A, 565, 2021 · Zbl 07464402 · doi:10.1016/j.physa.2020.125573
[4] Aoki, K.; Charrier, P.; Degond, P., A hierarchy of models related to nanoflows and surface diffusion, Kinet. Relat. Models, 4, 53-85, 2011 · Zbl 1218.82029 · doi:10.3934/krm.2011.4.53
[5] Aoki, K., Giovangigli, V., Hattori, M.: A kinetic model of adsorption on solid surfaces. In: Ketsdever, A., Struchtrup, H. (eds.) 30th International Symposium on Rarefied Gas Dynamics, AIP Conference Proceedings 1786, p. 100005, AIP, Melville, NY (2016)
[6] Aoki, K.; Giovangigli, V.; Kosuge, S., Boundary conditions for the Boltzmann equation from gas-surface interaction kinetic models, Phys. Rev. E, 106, 2022 · doi:10.1103/PhysRevE.106.035306
[7] Bardos, C.; Caflisch, RE; Nicolaenko, B., The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas, Commun. Pure Appl. Math., 39, 323-352, 1986 · Zbl 0612.76088 · doi:10.1002/cpa.3160390304
[8] Bardos, C.; Golse, F.; Sone, Y., Half-space problems for the Boltzmann equation: a survey, J. Stat. Phys., 124, 275-300, 2006 · Zbl 1125.82013 · doi:10.1007/s10955-006-9077-z
[9] Beenakker, J.J.M., Borman, V.D., Krylov, S.Yu.: Molecular transport in the nanometer regime. Phys. Rev. Lett. 72, 514-517 (1994)
[10] Billing, GD, Dynamics of Molecule Surface Interactions, 2000, New York: Wiley, New York
[11] Bogdanov, AV; Dubrovskiy, GV; Krutikov, MP; Kulginov, DV; Strelchenya, VM, Interaction of Gases with Surfaces, 1995, Berlin: Springer, Berlin
[12] Borman, V.D., Krylov, S.Yu., Prosyanov, A.V., Kharitonov, A.M.: Theory of transport processes in a nonequilibrium gas-solid system. Sov. Phys. JETP 63, 43-56 (1986)
[13] Borman, V.D., Krylov, S.Yu., Prosyanov, A.V.: Theory of nonequilibrium phenomena at a gas-solid interface. Sov. Phys. JETP 67, 2110-2121 (1988)
[14] Brull, S.; Charrier, P.; Mieussens, L., Gas-surface interaction and boundary conditions for the Boltzmann equation, Kinet. Relat. Models, 7, 219-251, 2014 · Zbl 1304.82062 · doi:10.3934/krm.2014.7.219
[15] Brull, S.; Charrier, P.; Mieussens, L., Nanoscale roughness effect on Maxwell-like boundary conditions for the Boltzmann equation, Phys. Fluids, 28, 2016 · doi:10.1063/1.4960024
[16] Cercignani, C., The Boltzmann Equation and Its Applications, 1988, Berlin: Springer, Berlin · Zbl 0646.76001 · doi:10.1007/978-1-4612-1039-9
[17] Cercignani, C.; Lampis, M., Kinetic models for gas-surface interactions, Transp. Theor. Stat. Phys., 1, 101-114, 1971 · Zbl 0288.76041 · doi:10.1080/00411457108231440
[18] Chen, Y.; Gibelli, L.; Li, J.; Borg, MK, Impact of surface physisorption on gas scattering dynamics, J. Fluid Mech., 968, A4, 2023 · Zbl 1540.76182 · doi:10.1017/jfm.2023.496
[19] Epstein, M., A model of the wall boundary condition in kinetic theory, AIAA J., 5, 1797-1800, 1967 · doi:10.2514/3.4307
[20] Frezzotti, A.; Gibelli, L., A kinetic model for fluid-wall interaction, Proc. IMechE, 222, 787-795, 2008 · doi:10.1243/09544062JMES718
[21] Golse, F.; Poupaud, F., Stationary solutions of the linearized Boltzmann equation in a half-space, Math. Methods Appl. Sci., 11, 483-502, 1989 · Zbl 0679.35021 · doi:10.1002/mma.1670110406
[22] Kosuge, S., Aoki, K., Giovangigli, V.: Models of boundary condition for the Boltzmann equation based on kinetic approach. Riv. Mat. Univ. Parma (to be published)
[23] Kuščer, I., Reciprocity in scattering of gas molecules by surfaces, Surf. Sci., 25, 225-237, 1971 · doi:10.1016/0039-6028(71)90244-5
[24] Lalauze, R., Physico-Chemistry of Solid-Gas Interfaces: Concepts and Methodology for Gas Sensor Development, 2010, London: Wiley-ISTE, London
[25] Lord, RG, Some extensions to the Cercignani-Lampis gas-surface scattering kernel, Phys. Fluids A, 3, 706-710, 1991 · Zbl 0735.76059 · doi:10.1063/1.858076
[26] Matsui, J.; Matsumoto, Y.; Shizgal, BD; Weaver, DP, Study of scattering process in gas-surface interactions, Rarefied Gas Dynamics: Experimental Techniques and Physical Systems, Progress in Astronautics and Aeronautics 158, 515-524, 1994, Washington, DC: AIAA, Washington, DC
[27] Ruthven, DM, Principles of Adsorption and Adsorption Processes, 1984, New York: Wiley, New York
[28] Sone, Y., Molecular Gas Dynamics: Theory, Techniques, and Applications, 2007, Boston: Birkhäuser, Boston · Zbl 1144.76001 · doi:10.1007/978-0-8176-4573-1
[29] Struchtrup, H., Maxwell boundary condition and velocity dependent accommodation coefficient, Phys. Fluids, 25, 2013 · doi:10.1063/1.4829907
[30] Takata, S., Akasobe, S., Hattori, M.: A revisit to the Cercignani-Lampis model: Langevin picture and its numerical simulation. In: Salvarani, F. (ed.) Recent Advances in Kinetic Equations and Applications. Springer INdAM Series 48, pp. 345-365. Springer, Cham (2021) · Zbl 1497.76083
[31] Wachman, HY; Greber, I.; Kass, G.; Shizgal, BD; Weaver, DP, Molecular dynamics computations of scattering from a surface using a Lennard-Jones model of a solid, Rarefied Gas Dynamics: Experimental Techniques and Physical Systems, Progress in Astronautics and Aeronautics 158, 479-493, 1994, Washington, DC: AIAA, Washington, DC
[32] Wang, Z.; Song, C.; Qin, F.; Luo, X., Establishing a data-based scattering kernel model for gas-solid interaction by molecular dynamics simulation, J. Fluid Mech., 928, A34, 2021 · Zbl 1495.76096 · doi:10.1017/jfm.2021.828
[33] Yamamoto, K.; Takeuchi, H.; Hyakutake, T., Characteristics of reflected gas molecules at a solid surface, Phys. Fluids, 18, 2006 · doi:10.1063/1.2191871
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.