×

Only two Betchov homogeneity constraints exist for isotropic turbulence. (English) Zbl 1526.76026

Summary: Statistically homogeneous flows obey exact kinematic relations. The R. Betchov homogeneity constraints [J. Fluid Mech. 1, 497–504 (1956; Zbl 0071.40603)] for the average principal invariants of the velocity gradient are among the most well-known and extensively employed homogeneity relations. These homogeneity relations have far-reaching implications for the coupled dynamics of strain and vorticity, as well as for the turbulent energy cascade. Whether the Betchov homogeneity constraints are the only possible ones or whether additional homogeneity relations exist has not been proven yet. Here we show that the Betchov homogeneity constraints are the only homogeneity constraints for incompressible and statistically isotropic velocity gradient fields. Our analysis also applies to compressible/perceived velocity gradients, and it allows the derivation of homogeneity relations involving the velocity gradient and other dynamically relevant quantities, such as the pressure Hessian and viscous stresses.

MSC:

76F05 Isotropic turbulence; homogeneous turbulence

Citations:

Zbl 0071.40603

References:

[1] Alexakis, A. & Biferale, L.2018Cascades and transitions in turbulent flows. Phys. Rep.767-769, 1-101.
[2] Betchov, R.1956An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech.1 (5), 497-504. · Zbl 0071.40603
[3] Bragg, A.D., Hammond, A.L., Dhariwal, R. & Meng, H.2022Hydrodynamic interactions and extreme particle clustering in turbulence. J. Fluid Mech.933, A31. · Zbl 1514.76040
[4] Buaria, D., Pumir, A. & Bodenschatz, E.2020Self-attenuation of extreme events in Navier-Stokes turbulence. Nat. Commun.11, 5852.
[5] Buaria, D., Pumir, A. & Bodenschatz, E.2022Generation of intense dissipation in high Reynolds number turbulence. Phil. Trans. R. Soc. A380 (2218), 20210088.
[6] Carbone, M. & Bragg, A.D.2020Is vortex stretching the main cause of the turbulent energy cascade?J. Fluid Mech.883, R2. · Zbl 1430.76215
[7] Chertkov, M., Pumir, A. & Shraiman, B.I.1999Lagrangian tetrad dynamics and the phenomenology of turbulence. Phys. Fluids11 (8), 2394-2410. · Zbl 1147.76360
[8] Davidson, P.A.2004Turbulence: An Introduction for Scientists and Engineers. Oxford University Press. · Zbl 1061.76001
[9] Enciso, A., Peralta-Salas, D. & De Lizaur, F.T.2016Helicity is the only integral invariant of volume-preserving transformations. Proc. Natl Acad. Sci. USA113 (8), 2035-2040. · Zbl 1359.58006
[10] Grinfeld, P.2013Introduction to Tensor Analysis and the Calculus of Moving Surfaces. Springer. · Zbl 1300.53001
[11] Hierro, J. & Dopazo, C.2003Fourth-order statistical moments of the velocity gradient tensor in homogeneous, isotropic turbulence. Phys. Fluids15 (11), 3434-3442. · Zbl 1186.76224
[12] Hill, R.J.1997Applicability of Kolmogorov’s and Monin’s equations of turbulence. J. Fluid Mech.353, 67-81. · Zbl 0903.76044
[13] Itskov, M.2015Tensor Algebra and Tensor Analysis for Engineers. Springer. · Zbl 1309.15004
[14] Johnson, P.L.2020Energy transfer from large to small scales in turbulence by multiscale nonlinear strain and vorticity interactions. Phys. Rev. Lett.124, 104501.
[15] Johnson, P.L. & Meneveau, C.2016A closure for Lagrangian velocity gradient evolution in turbulence using recent-deformation mapping of initially Gaussian fields. J. Fluid Mech.804, 387-419. · Zbl 1454.76046
[16] Leppin, L.A. & Wilczek, M.2020Capturing velocity gradients and particle rotation rates in turbulence. Phys. Rev. Lett.125, 224501.
[17] Lund, T.S. & Novikov, E.A.1992 Parameterization of subgrid-scale stress by the velocity gradient tensor. Center for Turbulence Research (Stanford University and NASA).
[18] Majda, A.J. & Bertozzi, A.L.2001Vorticity and Incompressible Flow. . Cambridge University Press. · Zbl 0983.76001
[19] Meneveau, C.2011Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech.43 (1), 219-245. · Zbl 1299.76088
[20] Meurer, A., et al.2017Sympy: symbolic computing in Python. PeerJ Comput. Sci.3, e103.
[21] Momenifar, M., Diao, E., Tarokh, V. & Bragg, A.D.2022Dimension reduced turbulent flow data from deep vector quantisers. J. Turbul.23 (4-5), 232-264.
[22] Naso, A. & Pumir, A.2005Scale dependence of the coarse-grained velocity derivative tensor structure in turbulence. Phys. Rev. E72, 056318. · Zbl 1273.76132
[23] Pennisi, S. & Trovato, M.1987On the irreducibility of professor G.F. Smith’s representations for isotropic functions. Intl J. Engng Sci.25 (8), 1059-1065. · Zbl 0614.73002
[24] Rivlin, R.S. & Ericksen, J.L.1955Stress-deformation relations for isotropic materials. J. Rat. Mech. Anal.4, 323-425. · Zbl 0064.42004
[25] Serre, D.1984Les invariants du premier ordre de l’equation d’Euler en dimension trois. Physica D13 (1), 105-136. · Zbl 0586.76025
[26] Siggia, E.D.1981Invariants for the one-point vorticity and strain rate correlation functions. Phys. Fluids24 (11), 1934-1936. · Zbl 0471.76063
[27] Tian, Y., Livescu, D. & Chertkov, M.2021Physics-informed machine learning of the Lagrangian dynamics of velocity gradient tensor. Phys. Rev. Fluids6, 094607.
[28] Tom, J., Carbone, M. & Bragg, A.D.2021Exploring the turbulent velocity gradients at different scales from the perspective of the strain-rate eigenframe. J. Fluid Mech.910, A24. · Zbl 1461.76195
[29] Townsend, A.A. & Taylor, G.I.1951On the fine-scale structure of turbulence. Proc. Math. Phys. Engng Sci.208 (1095), 534-542. · Zbl 0043.19201
[30] Tsinober, A.2009An Informal Conceptual Introduction to Turbulence. Springer. · Zbl 1177.76001
[31] Weyl, H.1946The Classical Groups: Their Invariants and Representations. Princeton Landmarks in Mathematics and Physics, Nr. 1, Teil 1. Princeton University Press. · Zbl 1024.20502
[32] Xu, H., Pumir, A. & Bodenschatz, E.2011The pirouette effect in turbulent flows. Nat. Phys.7, 709-712.
[33] Yang, P.-F., Fang, J., Fang, L., Pumir, A. & Xu, H.2022Low-order moments of the velocity gradient in homogeneous compressible turbulence. J. Fluid Mech.947, R1. · Zbl 1504.76046
[34] Yang, P.-F., Pumir, A. & Xu, H.2020Dynamics and invariants of the perceived velocity gradient tensor in homogeneous and isotropic turbulence. J. Fluid Mech.897, A9. · Zbl 1460.76367
[35] Zheng, Q.-S.1994Theory of representations for tensor functions-a unified invariant approach to constitutive equations. Appl. Mech. Rev.47 (11), 545-587. · Zbl 0999.74501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.