×

Deep weak approximation of SDEs: a spatial approximation scheme for solving Kolmogorov equations. (English) Zbl 07714903

Summary: In this paper, we propose a new computation scheme for numerical solutions of Kolmogorov equations based on a high-order weak approximation method of stochastic differential equations and deep learning. The scheme provides a spatial approximation for solving Kolmogorov equations without the curse of dimensionality. We show numerical examples based on the proposed scheme for high-dimensional Kolmogorov equations.

MSC:

65-XX Numerical analysis
76-XX Fluid mechanics

Software:

DGM; Adam
Full Text: DOI

References:

[1] Aggarwal, C. C. [2018] Neural Networks and Deep Learning (Springer). · Zbl 1402.68001
[2] Arora, R., Basu, A., Mianjy, P. and Mukherjee, A. [2018] “ Understanding deep neural networks with rectified linear units,” Vancouver, BC, Canada, , Int. Conf. Learning Representations.
[3] Beck, C., E W. and Jentzen, A. [2019] “ Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations,” J. Nonlinear Sci.29(4), 1563-1619. · Zbl 1442.91116
[4] Beck, C., Hutzenthaler, M., Jentzen, A. and Kuckuck, B. [2020] “An overview on deep learning-based approximation methods for partial differential equations.” · Zbl 07675828
[5] Beck, C., Becker, S., Grohs, P., Jaafari, N. and Jentzen, A. [2021a] “ Solving the Kolmogorov PDE by means of deep learning,” J. Sci. Comput.88(3), 1-28. · Zbl 1490.65006
[6] Beck, C., Becker, S., Cheridito, P., Jentzen, A. and Neufeld, A. [2021b] “ Deep splitting method for parabolic PDEs,” SIAM J. Sci. Comput.43(5), 3135-3154. · Zbl 1501.65054
[7] Becker, S., Cheridito, P. and Jentzen, A. [2019] “ Deep optimal stopping,” J. Mach. Learn. Res.20, 74. · Zbl 1495.60029
[8] Becker, S., Cheridito, P., Jentzen, A. and Welti, T. [2021] “ Solving high-dimensional optimal stopping problems using deep learning,” Eur. J. Appl. Math.32(3), 470-514. · Zbl 1505.91413
[9] Berner, J., Grohs, P. and Jentzen, A. [2020] “ Analysis of the generalization error: Empirical risk minimization over deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations,” SIAM J. Math. Data Sci.2(3), 631-657. · Zbl 1480.60191
[10] Black, F. and Scholes, M. [1973] “ The pricing of options and corporate liabilities,” J. Polit. Econ.81(3), 637-654. · Zbl 1092.91524
[11] Calin, O. [2020] Deep Learning Architectures (Springer). · Zbl 1441.68001
[12] Chandru, M., Das, P. and Ramos, H. [2018] “ Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with nonsmooth data,” Math. Methods Appl. Sci.41(14), 5359-5387. · Zbl 1403.35024
[13] Chandru, M., Prabha, T., Das, P. and Shanthi, V. [2019] “ A numerical method for solving boundary and interior layers dominated parabolic problems with discontinuous convection coefficient and source terms,” Differ. Equ. Dyn. Syst.27(1), 91-112. · Zbl 1415.35013
[14] Cox, J. C., Ingersoll, J. E. and Ross, S. A. [1985] “ A theory of the term structure of interest rates,” Econometrica53(2), 385-407. · Zbl 1274.91447
[15] Das, P., Rana, S. and Ramos, H. [2019] “ Homotopy perturbation method for solving Caputo-type fractional-order Volterra-Fredholm integro-differential equations,” Comput. Math. Methods1(5), e1047.
[16] Das, P., Rana, S. and Ramos, H. [2020a] “ A perturbation-based approach for solving fractional-order Volterra-Fredholm integro differential equations and its convergence analysis,” Int. J. Comput. Math.97(10), 1994-2014. · Zbl 1492.65357
[17] Das, P., Rana, S. and Vigo-Aguiar, J. [2020b] “ Higher order accurate approximations on equidistributed meshes for boundary layer originated mixed type reaction diffusion systems with multiple scale nature,” Appl. Numer. Math.148, 79-97. · Zbl 1448.65075
[18] Das, P., Rana, S. and Ramos, H. [2022] “ On the approximate solutions of a class of fractional order nonlinear Volterra integro-differential initial value problems and boundary value problems of first kind and their convergence analysis,” J. Comput. Appl. Math.404, 113116. · Zbl 1481.65265
[19] Das, P. and Mehrmann, V. [2016] “ Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters,” BIT Numer. Math.56(1), 51-76. · Zbl 1341.65031
[20] Das, P. and Natesan, S. [2014] “ Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction-diffusion boundary-value problems,” Appl. Math. Comput.249, 265-277. · Zbl 1338.65194
[21] Das, P. and Rana, S. [2021] “ Theoretical prospects of fractional order weakly singular Volterra Integro differential equations and their approximations with convergence analysis,” Math. Methods Appl. Sci.44(11), 9419-9440. · Zbl 1512.65132
[22] Das, P. and Vigo-Aguiar, J. [2019] “ Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems involving a small perturbation parameter,” J. Comput. Appl. Math.354, 533-544. · Zbl 1415.65166
[23] Das, P. [2015] “ Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems,” J. Comput. Appl. Math.290, 16-25. · Zbl 1321.65126
[24] Das, P. [2018] “ A higher order difference method for singularly perturbed parabolic partial differential equations,” J. Differ. Equ. Appl.24(3), 452-477. · Zbl 1427.65156
[25] Das, P. [2019] “ An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh,” Numer. Algorithms81(2), 465-487. · Zbl 1454.65050
[26] E, W., Han, J. and Jentzen, A. [2017] “ Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations,” Commun. Math. Stat.5(4), 349-380. · Zbl 1382.65016
[27] E, W., Li, T. and Vanden-Eijnden, E. [2019] Applied Stochastic Analysis (AMS). · Zbl 1430.60002
[28] E, W., Han, J. and Jentzen, A. [2022] “ Algorithms for solving high dimensional PDEs: From nonlinear Monte Carlo to machine learning,” Nonlinearity35(1), 278. · Zbl 1490.60202
[29] Elbrächter, D., Grohs, P., Jentzen, A. and Schwab, C. [2021] “ DNN expression rate analysis of high-dimensional PDEs: Application to option pricing,” Constr. Approx., 1-69. · Zbl 1500.35009
[30] Fujii, M., Takahashi, A. and Takahashi, M. [2019] “ Asymptotic expansion as prior knowledge in deep learning method for high dimensional BSDEs,” Asia-Pac. Financ. Mark.26(3), 391-408. · Zbl 1422.91694
[31] Gardiner, C. W. [2009] Stochastic Methods: A Handbook for the Natural and Social Sciences, 4th Edition (Springer). · Zbl 1181.60001
[32] Glorot, X., and Bengio, Y. [2010] “Understanding the difficulty of training deep feedforward neural networks,” Proc. Thirteenth Int. Conf. Artificial Intelligence and Statistics, Chia Laguna resort, Sardinia, Italy, JMLR Workshop and Conf. Proc., pp. 249-256.
[33] Grohs, P., Hornung, F., Jentzen, A. and Zimmermann, P. [2019a] “Space-time error estimates for deep neural network approximations for differential Equations”, arXiv:1908.03833. · Zbl 07649348
[34] Grohs, P., Jentzen, A. and Salimova, D. [2019b] “Deep neural network approximations for Monte Carlo algorithms,” arXiv:1908.10828. · Zbl 1490.65232
[35] Hagan, P. S. and Lesniewski, A. [2017] “Implied volatilities for mean reverting SABR models,” Wilmott October 2017.
[36] Hairer, M., Hutzenthaler, M. and Jentzen, A. [2015] “ Loss of regularity for Kolmogorov equations,” Ann. Probab.43(2), 468-527. · Zbl 1322.35083
[37] Han, J., Jentzen, A. and E. W. [2018] “ Solving high-dimensional partial differential equations using deep learning,” Proc. Natl. Acad. Sci.115(34), 8505-8510. · Zbl 1416.35137
[38] Han, J., Zhang, L. and E. W. [2019] “ Solving many-electron Schrödinger equation using deep neural networks,” J. Comput. Phys.399, 108929. · Zbl 1457.81010
[39] Han, J., Lu, J. and Zhou, M. [2020] “ Solving high-dimensional eigenvalue problems using deep neural networks: A diffusion Monte Carlo like approach,” J. Comput. Phys.423, 109792. · Zbl 07508411
[40] Han, J. and Long, J. [2020] “ Convergence of the deep BSDE method for coupled FBSDEs,” Probab. Uncertain. Quant. Risk5(1), 1-33. · Zbl 1454.60105
[41] Henry-Labordere, P. [2017] “Deep primal-dual algorithm for BSDEs: Applications of machine learning to CVA and IM,” Available at: https://doi.org/10.2139/ssrn.3071506.
[42] Heston, S. [1993] “ A closed-form solution for options with stochastic volatility with applications to bond and currency options,” Rev. Financ. Stud.6(2), 327-343. · Zbl 1384.35131
[43] Hornung, F., Jentzen, A. and Salimova, D. [2020] Space-time deep neural network approximations for high-dimensional partial differential equations, arXiv:2006.02199.
[44] Huré, C., Pham, H. and Warin, X. [2019] “Some machine learning schemes for high-dimensional nonlinear PDEs,” arXiv:1902.01599. · Zbl 1440.60063
[45] Huré, C., Pham, H. and Warin, X. [2020] “ Deep backward schemes for high-dimensional nonlinear PDEs,” Math. Comput.89(324), 1547-1579. · Zbl 1440.60063
[46] Hutzenthaler, M., Jentzen, A., Kruse, T., Nguyen, T. A. and Wurstemberger, P. V. [2020] “ Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations,” Proc. R. Soc. A476(2244), 20190630. · Zbl 1472.65157
[47] Iguchi, Y., Naito, R., Okano, Y., Takahashi, A. and Yamada, T. [2021] “ Deep asymptotic expansion: Application to financial mathematics,” IEEE Asia-Pacific Conf. Computer Science and Data Engineering, 2021, Queensland, Brisbane, Australia, .
[48] Iguchi, Y. and Yamada, T. [2021] “ Operator splitting around Euler-Maruyama scheme and high order discretization of heat kernels,” ESAIM: Math. Model. Numer. Anal.55, 323-367. · Zbl 1479.58024
[49] Ikeda, N. and Watanabe, S. [1989] Stochastic Differential Equations and Diffusion Processes, 2nd Edition (North-Holland, Amsterdam). · Zbl 0684.60040
[50] Ioffe, S. and Szegedy, C. [2015, ] “ Batch normalization: Accelerating deep network training by reducing internal covariate shift,” Int. Conf. Machine Learning, PMLR, pp. 448-456.
[51] Karatzas, I. and Shreve, S. E. [1991] Brownian Motion and Stochastic Calculus (Springer). · Zbl 0734.60060
[52] Kingma, D. and Ba, J. [2015] “ Adam: A method for stochastic optimization,” Proc. Int. Conf. Learning Representations (ICLR), San Diego, CA, USA, , .
[53] Kloeden, P. E. and Platen, E. [1999] Numerical Solution of Stochastic Differential Equations (Springer). · Zbl 0752.60043
[54] Kumar, K., Podila, P. C., Das, P. and Ramos, H. [2021] “ A graded mesh refinement approach for boundary layer originated singularly perturbed time-delayed parabolic convection diffusion problems,” Math. Methods Appl. Sci.44(16), 12332-12350. · Zbl 1512.65180
[55] Kusuoka, S. and Stroock, D. [1984] “ Applications of the Malliavin calculus Part I,” Stoch. Anal. (Katata/Kyoto 1982), 271-306. · Zbl 0546.60056
[56] Kusuoka, S. [2001] “ Approximation of expectation of diffusion process and mathematical finance,” Adv. Stud. Pure Math.31, 147-165. · Zbl 1028.60052
[57] Marie, N. [2014] “ A generalized mean-reverting equation and applications,” ESAIM: Probab. Stat.18, 799-828. · Zbl 1308.60074
[58] Maruyama, G. [1955] “ Continuous Markov processes and stochastic equations,” Rend. Circ. Mat. Palermo4, 48-90. · Zbl 0053.40901
[59] Musiela, M. and Rutkowski, M. [2006] Martingale Methods in Financial Modelling (Springer). · Zbl 0906.60001
[60] Naito, R. and Yamada, T. [2019] “ A third-order weak approximation of multidimensional Itô stochastic differential equations,” Monte Carlo Methods Appl.25(2), 97-120. · Zbl 1418.60101
[61] Naito, R. and Yamada, T. [2020a] A machine learning solver for high-dimensional integrals: Solving Kolmogorov PDEs by stochastic weighted minimization and stochastic gradient descent through a high-order weak approximation scheme of SDEs with Malliavin weights, arXiv:2012.12346.
[62] Naito, R. and Yamada, T. [2020b] “ An acceleration scheme for deep learning-based BSDE solver using weak expansions,” Int. J. Financial Eng.7(2), 2050012.
[63] Naito, R. and Yamada, T. [2021] “ A higher order weak approximation of McKean-Vlasov type SDEs,” BIT Numer. Math.(Online First), https://doi.org/10.1007/s10543-021-00880-1. · Zbl 1487.35368
[64] Nualart, D. [2006] The Malliavin Calculus and Related Topics (Springer). · Zbl 1099.60003
[65] Pavliotis, G. A. [2014] Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations (Springer). · Zbl 1318.60003
[66] Raissi, M. [2018a] Forward-backward stochastic neural networks: Deep learning of high-dimensional partial differential equations, arXiv:1804.07010.
[67] Raissi, M. [2018b] “ Deep hidden physics models: Deep learning of nonlinear partial differential equations,” J. Mach. Learn. Res.19(1), 932-955. · Zbl 1439.68021
[68] Raissi, M., Perdikaris, P. and Karniadakis, G. E. [2019] “ Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” J. Comput. Phys.378, 686-707. · Zbl 1415.68175
[69] Rendleman, R. and Bartter, B. [1980] “ The pricing of options on debt securities,” J. Financial Quant. Anal.15, 11-24.
[70] Ruder, S. [2016] An overview of gradient descent optimization algorithms, arXiv:1609.04747.
[71] Shakti, D., Mohapatra, J., Das, P. and Vigo-Aguiar, J. [2020] “ A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction-diffusion problems with arbitrary small diffusion terms,” J. Comput. Appl. Math.404, 113167. · Zbl 1503.65184
[72] Sirignano, J. and Spiliopoulos, K. [2018] “ DGM: A deep learning algorithm for solving partial differential equations,” J. Comput. Phys.375, 1339-1364. · Zbl 1416.65394
[73] Takahashi, A., Tsuchida, Y. and Yamada, T. [2022] “ A new efficient approximation scheme for solving high-dimensional semilinear PDEs: Control variate method for Deep BSDE solver,” J. Comput. Phys.454, 110956. · Zbl 07518053
[74] Takahashi, A. and Yamada, T. [2016] “ A weak approximation with asymptotic expansion and multidimensional Malliavin weights,” Ann. Appl. Probab.26(2), 818-856. · Zbl 1339.60099
[75] Takahashi, A. [2015] “ Asymptotic expansion approach in finance,” in Large Deviations and Asymptotic Methods in Finance, (Springer) , eds. Friz, P., Gatheral, J., Gulisashvili, A., Jacquier, A. and Teichmann, J. · Zbl 1322.60003
[76] Van Kampen, N. G. [2007] Stochastic Processes in Physics and Chemistry, 3rd Edition (Elsevier). · Zbl 0974.60020
[77] Yamada, T. [2019] “ An arbitrary high order weak approximation of SDE and Malliavin Monte Carlo: Application to probability distribution functions,” SIAM J. Numer. Anal.57(2), 563-591. · Zbl 1418.60050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.