×

An efficient invariant-region-preserving central scheme for hyperbolic conservation laws. (English) Zbl 1510.76106

Summary: Due to the Riemann solver free and avoiding characteristic decomposition, the central scheme is a simple and efficient tool for numerical solution of hyperbolic conservation laws [H. Nessyahu and E. Tadmor, J. Comput. Phys. 87, No. 2, 408–463 (1990; Zbl 0697.65068)]. But the theoretical Courant number CFL in order to preserve the invariant region of the numerical solution is very small, and there is lack of the stability proof for nonlinear systems. By adding a limiter on the reconstructed slope without requiring clipping condition, we enlarge the value of the CFL to admit larger time step. Then a widely applicable stability proof, which is suitable for general hyperbolic conservation laws, is given by writing the evolved solution as convex combinations in terms of the Lax-Friedrichs scheme. Some numerical experiments are carried out to verify the robustness.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
35L65 Hyperbolic conservation laws

Citations:

Zbl 0697.65068

Software:

HE-E1GODF; HLLE
Full Text: DOI

References:

[1] Lax, P. D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves (1973), SIAM · Zbl 0268.35062
[2] Chueh, K. N.; Conley, C. C.; Smoller, J. A., Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J., 26, 2, 373-392 (1977) · Zbl 0368.35040
[3] Jiang, Y.; Liu, H., Invariant-region-preserving DG methods for multi-dimensional hyperbolic conservation law systems, with an application to compressible Euler equations, J. Comput. Phys., 373, 385-409 (2018) · Zbl 1416.65293
[4] Wu, K., Minimum principle on specific entropy and high-order accurate invariant region preserving numerical methods for relativistic hydrodynamics, SIAM J. Sci. Comput., 43, 6, B1164-B1197 (2021) · Zbl 1500.65073
[5] Guermond, J.-L.; Nazarov, M.; Popov, B.; Tomas, I., Second-order invariant domain preserving approximation of the Euler equations using convex limiting, SIAM J. Sci. Comput., 40, 5, A3211-A3239 (2018) · Zbl 1402.65110
[6] Guermond, J.-L.; Popov, B., Invariant domains and first-order continuous finite element approximation for hyperbolic systems, SIAM J. Numer. Anal., 54, 4, 2466-2489 (2016) · Zbl 1346.65050
[7] Berthon, C.; Marche, F., A positive preserving high order VFRoe scheme for shallow water equations: a class of relaxation schemes, SIAM J. Sci. Comput., 30, 5, 2587-2612 (2008) · Zbl 1358.76053
[8] Perthame, B.; Shu, C.-W., On positivity preserving finite volume schemes for Euler equations, Numer. Math., 73, 1, 119-130 (1996) · Zbl 0857.76062
[9] Zhang, X.; Shu, C.-W., On maximum-principle-satisfying high order schemes for scalar conservation laws, J. Comput. Phys., 229, 9, 3091-3120 (2010) · Zbl 1187.65096
[10] Zhang, X.; Shu, C.-W., On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. Comput. Phys., 229, 23, 8918-8934 (2010) · Zbl 1282.76128
[11] Cheng, Y.; Li, F.; Qiu, J.; Xu, L., Positivity-preserving DG and central DG methods for ideal MHD equations, J. Comput. Phys., 238, 255-280 (2013) · Zbl 1286.76162
[12] Wu, K.; Tang, H., High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics, J. Comput. Phys., 298, 539-564 (2015) · Zbl 1349.76550
[13] Wu, K.; Xing, Y., Uniformly high-order structure-preserving discontinuous Galerkin methods for Euler equations with gravitation: positivity and well-balancedness, SIAM J. Sci. Comput., 43, 1, A472-A510 (2021) · Zbl 1466.65150
[14] Godunov, S.; Bohachevsky, I., Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics, Matematičeskij sbornik, 47, 3, 271-306 (1959) · Zbl 0171.46204
[15] Harten, A.; Lax, P. D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 1, 35-61 (1983) · Zbl 0565.65051
[16] Einfeldt, B., On Godunov-type methods for gas dynamics, SIAM J. Numer. Anal., 25, 2, 294-318 (1988) · Zbl 0642.76088
[17] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (2013), Springer Science & Business Media
[18] W. Tong, R. Yan, G. Chen, A sharp stability analysis of the MUSCL-Hancock scheme for scalar hyperbolic conservation laws, submitted (2022).
[19] Chen, G.; Noelle, S., A new hydrostatic reconstruction scheme based on subcell reconstructions, SIAM J. Numer. Anal., 55, 2, 758-784 (2017) · Zbl 1365.76146
[20] Chen, G.; Noelle, S., A unified surface-gradient and hydrostatic reconstruction scheme for the shallow water equations, J. Comput. Phys., 467, 111463 (2022) · Zbl 07568559
[21] Nessyahu, H.; Tadmor, E., Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 2, 408-463 (1990) · Zbl 0697.65068
[22] Sanders, R.; Weiser, A., High resolution staggered mesh approach for nonlinear hyperbolic systems of conservation laws, J. Comput. Phys., 101, 2, 314-329 (1992) · Zbl 0756.65112
[23] Jiang, G.-S.; Tadmor, E., Nonoscillatory central schemes for multidimensional hyperbolic conservation laws, SIAM J. Sci. Comput., 19, 6, 1892-1917 (1998) · Zbl 0914.65095
[24] Jiang, G.-S.; Levy, D.; Lin, C.-T.; Osher, S.; Tadmor, E., High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws, SIAM J. Numer. Anal., 35, 6, 2147-2168 (1998) · Zbl 0920.65053
[25] Kurganov, A.; Tadmor, E., New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160, 1, 241-282 (2000) · Zbl 0987.65085
[26] Kurganov, A.; Petrova, G., A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems, Numer. Math., 88, 4, 683-729 (2001) · Zbl 0987.65090
[27] Kurganov, A.; Petrova, G.; Popov, B., Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws, SIAM J. Sci. Comput., 29, 6, 2381-2401 (2007) · Zbl 1154.65356
[28] Popov, B.; Hua, Y., Invariant domain preserving central schemes for nonlinear hyperbolic systems, Commun. Math. Sci., 19, 2, 529-556 (2021) · Zbl 07440971
[29] Liu, X.-D.; Tadmor, E., Third order nonoscillatory central scheme for hyperbolic conservation laws, Numer. Math., 79, 3, 397-425 (1998) · Zbl 0906.65093
[30] Touma, R.; Arminjon, P., Central finite volume schemes with constrained transport divergence treatment for three-dimensional ideal MHD, J. Comput. Phys., 212, 2, 617-636 (2006) · Zbl 1161.76523
[31] Touma, R.; Koley, U.; Klingenberg, C., Well-balanced unstaggered central schemes for the euler equations with gravitation, SIAM J. Sci. Comput., 38, 5, B773-B807 (2016) · Zbl 1346.76100
[32] Touma, R., Central unstaggered finite volume schemes for hyperbolic systems: applications to unsteady shallow water equations, Appl. Math. Comput., 213, 1, 47-59 (2009) · Zbl 1165.76034
[33] Touma, R.; Klingenberg, C., Well-balanced central finite volume methods for the Ripa system, Appl. Numer. Math., 97, 42-68 (2015) · Zbl 1329.76217
[34] Touma, R., Well-balanced central schemes for systems of shallow water equations with wet and dry states, Appl. Math. Model., 40, 4, 2929-2945 (2016) · Zbl 1452.65193
[35] Touma, R.; Kanbar, F., Well-balanced central schemes for two-dimensional systems of shallow water equations with wet and dry states, Appl. Math. Model., 62, 728-750 (2018) · Zbl 1460.76642
[36] Touma, R.; Saleh, M., Well-balanced central schemes for pollutants transport in shallow water equations, Math. Comput. Simulat., 190, 1275-1293 (2021) · Zbl 1540.76126
[37] Liu, Y., Central schemes on overlapping cells, J. Comput. Phys., 209, 1, 82-104 (2005) · Zbl 1076.65076
[38] Liu, Y.; Shu, C.-W.; Tadmor, E.; Zhang, M., Central discontinuous Galerkin methods on overlapping cells with a nonoscillatory hierarchical reconstruction, SIAM J. Numer. Anal., 45, 6, 2442-2467 (2007) · Zbl 1157.65450
[39] R. Yan, W. Tong, G. Chen, An improved central scheme for nonlinear shallow water equations, submitted (2022).
[40] Lax, P. D., Weak solutions of nonlinear hyperbolic equations and their numerical computation, Commun. Pur. Appl. Math., 7, 1, 159-193 (1954) · Zbl 0055.19404
[41] Berthon, C., Stability of the MUSCL schemes for the Euler equations, Commun. Math. Sci., 3, 2, 133-157 (2005) · Zbl 1161.65344
[42] Harten, A.; Osher, S., Uniformly high order accurate nonoscillatory schemes. I, SIAM J. Numer. Anal., 24, 279-309 (1982) · Zbl 0627.65102
[43] van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys., 32, 1, 101-136 (1979) · Zbl 1364.65223
[44] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 1, 202-228 (1996) · Zbl 0877.65065
[45] Sod, G. A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 27, 1, 1-31 (1978) · Zbl 0387.76063
[46] Tang, H.; Liu, T., A note on the conservative schemes for the Euler equations, J. Comput. Phys., 218, 2, 451-459 (2006) · Zbl 1103.76041
[47] Li, J.; Li, Q.; Xu, K., Comparison of the generalized Riemann solver and the gas-kinetic scheme for inviscid compressible flow simulations, J. Comput. Phys., 230, 12, 5080-5099 (2011) · Zbl 1416.76250
[48] Zhang, X.; Shu, C.-W., Positivity-preserving high order finite difference WENO schemes for compressible Euler equations, J. Comput. Phys., 231, 5, 2245-2258 (2012) · Zbl 1426.76493
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.