×

Convergence analysis of optimal iterative family for multiple roots and its applications. (English) Zbl 07914745

Summary: In this paper, we use weight function approach to construct a new King-like family of methods to solve nonlinear equations with multiple roots. Here the weight functions are chosen appropriately to reach the maximum convergence order eight and the family is optimal in the sense of Kung-Traub conjecture. Moreover, local convergence of a fourth order modified King’s family for multiple roots is also studied. Radii of convergence balls of fourth order schemes are computed and compared with an existing method. Numerical examples have been presented based on applications of some real life problems and the results obtained show the superiority of our eighth order schemes over the existing ones. To study the dynamical behaviour of the proposed schemes, basins of attraction have also been presented which verifies that proposed eighth order schemes have more convergent points and requires less number of iterations in comparison to the existing methods.

MSC:

65H04 Numerical computation of roots of polynomial equations
65K10 Numerical optimization and variational techniques
Full Text: DOI

References:

[1] Sharma, JR; Guha, RK, A family of modified Ostrowski methods with accelerated sixth order convergence, Appl. Math. Comput., 190, 111-115, 2007 · Zbl 1126.65046
[2] Bi, W.; Wu, Q.; Ren, H., A new family of eighth order iterative methods for solving nonlinear equations, Appl. Math. Comput., 214, 236-245, 2009 · Zbl 1173.65030
[3] Cordero, A.; Torregrosa, JR; Vassileva, MP, A family of modified Ostrowski’s methods with optimal eighth order of convergence, Appl. Math. Lett., 24, 2082-2086, 2011 · Zbl 1343.65050 · doi:10.1016/j.aml.2011.06.002
[4] Bhavna; Bhatia, S., Local convergence of a seventh order derivative-free method for solving nonlinear equations in banach spaces, Int. J. Appl. Comput. Math., 8, 125, 2022 · Zbl 1489.65074 · doi:10.1007/s40819-022-01328-y
[5] Argyros, IK; Argyros, CI; John, JA; Jayaraman, J., On two competing methods with optimal eighth order convergence, Int. J. Comput. Appl. Math., 9, 72, 2023 · doi:10.1007/s40819-023-01560-0
[6] Traub, JF, Iterative Methods for the Solution of Equations, 1964, Englewood Cliffs: Prentice-Hall, Englewood Cliffs · Zbl 0121.11204
[7] Hansen, E.; Patrick, M., A family of root finding methods, Numer. Math., 27, 257-269, 1977 · Zbl 0361.65041 · doi:10.1007/BF01396176
[8] Neta, B., Extension of Murakami’s high-order non-linear solver to multiple roots, Int. J. Comput. Math., 87, 1023-1031, 2010 · Zbl 1192.65052 · doi:10.1080/00207160802272263
[9] Kansal, M.; Kanwar, V.; Bhatia, S., On some optimal multiple root-finding methods and their dynamics, Appl. Appl. Math., 10, 349-367, 2015 · Zbl 1411.65072
[10] Hueso, JL; Martinez, E.; Teruel, C., Determination of multiple roots of nonlinear equations and applications, J. Math. Chem., 53, 880-892, 2015 · Zbl 1331.65073 · doi:10.1007/s10910-014-0460-8
[11] Behl, R.; Kansal, M.; Salimi, M., Modified King’s family for multiple zeros of scalar nonlinear functions, Mathematics, 8, 827, 2020 · doi:10.3390/math8050827
[12] Behl, R.; Bhalla, S.; Chun, C., Two-step iterative methods for multiple roots and their applications for solving several physical and chemical problems, Math. Methods Appl. Sci., 2023 · Zbl 1527.65032 · doi:10.1002/mma.9022
[13] Geum, YH; Kim, YI; Neta, B., A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics, Appl. Math. Comput., 270, 387-400, 2015 · Zbl 1410.65159
[14] Geum, YH; Kim, YI; Neta, B., A sixth-order family of three-point modified Newton-like multiple root finders and the dynamics behind their extraneous fixed point, Appl. Math. Comput., 283, 120-140, 2016 · Zbl 1410.65160
[15] Rahma, S.; Imran, M.; Syamsudhuha, A sixth-order two-step method for finding a multiple root of nonlinear equations, Appl. Math. Sci., 13, 793-803, 2019
[16] Zafar, F.; Cordero, A.; Quratulain, R.; Torregrosa, JR, Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters, J. Math. Chem., 56, 1884-1901, 2017 · Zbl 1404.92231 · doi:10.1007/s10910-017-0813-1
[17] Behl, R.; Zafar, F.; Alshomrani, AS; Junjuaz, M.; Yasmin, N., An optimal eighth order scheme for multiple zeros of univariate functions, Int. J. Comput. Methods, 16, 1843002, 2018 · Zbl 1445.65019 · doi:10.1142/S0219876218430028
[18] Sharma, JR; Kumar, S.; Argyros, IK, Development of optimal eighth order derivative-free methods for multiple roots of nonlinear equations, Symmetry, 11, 76, 2019 · doi:10.3390/sym11060766
[19] Rani, L.; Soleymani, F.; Kansal, M.; Nashine, HK, An optimized Chebyshev-Halley type family of multiple solvers: Extensive analysis and applications, Math. Method Appl. Sci, 2022 · doi:10.1002/mma.8699
[20] Ren, H.; Argyros, IK, Convergence radius of the modified Newton method for multiple zeros under \(H \ddot{a}\) lder continuous derivative, Appl. Math. Comput., 217, 612-621, 2010 · Zbl 1205.65174
[21] Bi, WH; Ren, HM; Wu, QB, Convergence of the modified Halley’s method for multiple zeros under holder continuous derivative, Numer. Algor., 58, 497-512, 2011 · Zbl 1242.65098 · doi:10.1007/s11075-011-9466-5
[22] Lin, R.; Ren, H.; Wu, Q.; Khan, Y.; Hu, J., Convergence analysis of the modified Chebyshev’s method for finding multiple roots, Vietnam J. Math., 50, 59-68, 2022 · Zbl 1483.65078 · doi:10.1007/s10013-020-00470-8
[23] Behl, R.; Martinez, E.; Cevallos, F.; Alshomrani, AS, Local convergence balls for nonlinear problems with multiplicity and their extension to eighth order convergence, Math. Probl. Eng., 2019, 1-17, 2019 · Zbl 1435.65073 · doi:10.1155/2019/1427809
[24] Sharma, R.; Bahl, A.; Guglani, R., Optimal eighth-order multiple root finding iterative methods using bivariate weight function, Results Control Optim., 12, 2023 · doi:10.1016/j.rico.2023.100270
[25] Zafar, F.; Cordero, A.; Ashraf, I.; Torregrosa, JR, An optimal eighth order derivative free multiple root finding numerical method and applications to chemistry, J. Math. Chem., 61, 98-124, 2023 · Zbl 1515.65121 · doi:10.1007/s10910-022-01411-1
[26] Douglas, JM, Process Dynamics and Control, 1972, Englewood Cliffs: Prentice Hall, Englewood Cliffs
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.