×

Linear combination of independent exponential random variables. (English) Zbl 1411.65158

Summary: In this paper we prove a recursive identity for the cumulative distribution function of a linear combination of independent exponential random variables. The result is then extended to probability density function, expected value of functions of a linear combination of independent exponential random variables, and other functions. Our goal is on the exact and approximate calculation of the above mentioned functions and expected values. We study this computational problem from different views, namely as a Hermite interpolation problem, and as a matrix function evaluation problem. Examples are presented to illustrate the applicability and performance of the methods.

MSC:

65Q30 Numerical aspects of recurrence relations
65C50 Other computational problems in probability (MSC2010)

Software:

expm; Rmpfr; mftoolbox; R
Full Text: DOI

References:

[1] Amari SV, Misra RB (1997) Closed-form expressions for distribution of sum of exponential random variables. IEEE Trans Reliab 46:519-522 · doi:10.1109/24.693785
[2] Anjum B, Perros H (2011) Adding percentiles of Erlangian distributions. IEEE Commun Lett 15:346-348 · doi:10.1109/LCOMM.2011.011011.102143
[3] Bekker R, Koeleman PM (2011) Scheduling admissions and reducing variability in bed demand. Health Care Manag Sci 14:237-249 · doi:10.1007/s10729-011-9163-x
[4] Buchholz P, Kriege J, Felko I (2014) Input modeling with phase-type distributions and markov models: theory and applications. Springer, Cham · Zbl 1298.68012 · doi:10.1007/978-3-319-06674-5
[5] Cox DR (1962) Renewal Theory. Methuen and Co · Zbl 0103.11504
[6] Davies PI, Higham NJ (2003) A Schur-Parlett algorithm for computing matrix functions. SIAM J Matrix Anal Appl 25:464-485 · Zbl 1052.65031 · doi:10.1137/S0895479802410815
[7] Davis C (1973) Explicit functional calculus. Lin Alg Applic 6:193-199 · Zbl 0246.15023 · doi:10.1016/0024-3795(73)90019-0
[8] Dehghan M, Hajarian M (2009) Determination of a matrix function using the divided difference method of Newton and the interpolation technique of Hermite. J Comput Appl Math 231:67-81 · Zbl 1176.65051 · doi:10.1016/j.cam.2009.01.021
[9] Descloux J (1963) Bounds for the spectral norm of functions of matrices. Numer Math 5:185-190 · Zbl 0114.32303 · doi:10.1007/BF01385889
[10] Favaro S, Walker SG (2010) On the distribution of sums of independent exponential random variables via Wilks’ integral representation. Acta Appl Math 109:1035-1042 · Zbl 1197.60006 · doi:10.1007/s10440-008-9357-5
[11] Feller W (1971) An introduction to probability theory and its applications, vol II. Wiley, New York · Zbl 0219.60003
[12] Gershinsky M, Levine DA (1964) Aitken-hermite interpolation. JACM 11:352-356 · Zbl 0123.32903 · doi:10.1145/321229.321237
[13] Gertsbakh I, Neuman E, Vaisman R (2015) Monte Carlo for estimating exponential convolution. Comm Statist Simulation Comput 44:2696-2704 · Zbl 1474.65006 · doi:10.1080/03610918.2013.842591
[14] Goulet V, Dutang C, Maechler M, Firth D, Shapira M, Stadelmann M, expm-developers@lists.R-forge.R-project.org (2015) expm: Matrix Exponential. R package version 0.999-0. https://CRAN.R-project.org/package=expm
[15] Higham NJ (1993) The accuracy of floating point summation. SIAM J Sci Comput 14:783-799 · Zbl 0788.65053 · doi:10.1137/0914050
[16] Higham NJ (2008) Functions of matrices: theory and computation. SIAM · Zbl 1167.15001
[17] Higham NJ, Al-Mohy AH (2010) Computing matrix functions. Acta Numerica 19:159-208. https://doi.org/10.1017/S0962492910000036 · Zbl 1242.65090 · doi:10.1017/S0962492910000036
[18] Jasiulewicz H, Kordecki W (2003) Convolutions of Erlang and of Pascal distributions with applications to reliability. Demonstratio Math 36:231-238 · Zbl 1017.62105
[19] Kadri T, Smaili K (2014) The exact distribution of the ratio of two independent hypoexponential random variables. British J Math Computer Sci 4:2665-2675 · doi:10.9734/BJMCS/2014/11217
[20] Kadri T, Smaili K, Kadry S (2015) Markov modeling for reliability analysis using hypoexponential distribution. In: Kadry S, El Hami A (eds) Numerical methods for reliability and safety assessment: multiscale and multiphysics systems. Springer, Switzerland, pp 599-620 · Zbl 1325.62188
[21] Khuong HV, Kong H-Y (2006) General expression for pdf of a sum of independent exponential random variables. IEEE Commun Lett 10:159-161 · doi:10.1109/LCOMM.2006.1603370
[22] Kordecki W (1997) Reliability bounds for multistage structures with independent components. Statist Probab Lett 34:43-51 · Zbl 0899.62129 · doi:10.1016/S0167-7152(96)00164-2
[23] Kotz S, Kozubowski TJ, Podgórski K (2001) The laplace distribution and generalizations: a revisit with applications to communications, economics, engineering, and finance. Birkhäuser, Boston · Zbl 0977.62003
[24] Legros B, Jouini O (2015) A linear algebraic approach for the computation of sums of Erlang random variables. Appl Math Model 39:4971-4977 · Zbl 1443.60003 · doi:10.1016/j.apm.2015.04.013
[25] Macleod AJ (1982) A comparison of algorithms for polynomial interpolation. J Comput Appl Math 8:275-277 · Zbl 0494.65006 · doi:10.1016/0771-050X(82)90051-1
[26] Maechler M (2015) Rmpfr: R MPFR - multiple precision Floating-Point reliable. R package version 0.6-0. https://CRAN.R-project.org/package=Rmpfr
[27] Mathai AM (1982) Storage capacity of a dam with Gamma type inputs. Ann Inst Statist Math 34:591-597 · Zbl 0505.60099 · doi:10.1007/BF02481056
[28] Moler C, Van Loan C (2003) Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev 45:3-49 · Zbl 1030.65029 · doi:10.1137/S00361445024180
[29] Ogita T, Rump SM, Oishi S (2005) Accurate sum and dot product. SIAM J Sci Comput 26:1955-1988 · Zbl 1084.65041 · doi:10.1137/030601818
[30] Parlett BN (1976) A recurrence among the elements of functions of triangular matrices. Lin Alg Applic 14:117-121 · Zbl 0353.65027 · doi:10.1016/0024-3795(76)90018-5
[31] R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/
[32] Ratanov N (2015) Hypo-exponential distributions and compound Poisson process with alternating parameters. Statist Probab Lett 107:71-78 · Zbl 1329.60129 · doi:10.1016/j.spl.2015.08.006
[33] Ross SM (2014) Introduction to probability models, 11th edn. Academic Press, San Diego · Zbl 1284.60002
[34] Scheuer EM (1988) Reliability of an m-out-of-n system when component failure induces higher failure rates in survivors. IEEE Trans Reliab 37:73-74 · Zbl 0709.62511 · doi:10.1109/24.3717
[35] Shao H, Beaulieu NC (2012) An investigation of block coding for Laplacian noise. IEEE Trans Wireless Commun 11:2362-2372 · doi:10.1109/TWC.2012.051712.101143
[36] Smaili K, Kadri T, Kadry S (2013) Hypoexponential distribution with different parameters. Appl Math 4:624-631 · doi:10.4236/am.2013.44087
[37] Smaili K, Kadri T, Kadry S (2014) A modified-form expressions for the hypoexponential distribution. British J Math Computer Sci 4:322-332 · doi:10.9734/BJMCS/2014/6317
[38] Van Loan CF (1975) A study of the matrix exponential. Numerical Analysis Report No. 10 Department of Mathematics. University of Manchester, England
[39] Wen YZ, Yin CC (2014) A generalized Erlang(n) risk model with a hybrid dividend strategy (in Chinese). Sci Sin Math 44:1111-1122 · Zbl 1488.91103
[40] Yin M -L, Angus JE, Trivedi KS (2013) Optimal preventive maintenance rate for best availability with hypo-exponential failure distribution. IEEE Trans Reliab 62:351-361 · doi:10.1109/TR.2013.2256672
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.