×

The Lyapunov-Movchan method in problems of the stability of flows and deformation processes. (English. Russian original) Zbl 1432.74086

J. Appl. Math. Mech. 78, No. 6, 621-633 (2014); translation from Prikl. Mat. Mekh. 78, No. 6, 862-885 (2014).
Summary: The extension of Lyapunov’s method to continuous mechanical systems are discussed. An annotated bibliography of papers is given in which, based on the Lyapunov-Movchan method, with the construction of corresponding functionals, a direct analysis is carried out of the stability of motion (deformation) of continuous mechanical systems. The material is divided into sections, devoted to the following: (a) the extension of the mathematical apparatus as a whole to continuous and dynamic systems, (b) the stability of elastic, elastoplastic and viscoelastic deformable solids, (c) stability in aeroelasticity and hydroelasticity theory, (d) the linearized theory of hydrodynamic stability, and (e) the stability with reference to perturbations of material functions in the theory of constitutive relations.

MSC:

74H55 Stability of dynamical problems in solid mechanics
37B25 Stability of topological dynamical systems
37C75 Stability theory for smooth dynamical systems
Full Text: DOI

References:

[1] Lyapunov, A. M., The General Problem of the Stability of Motion (1950), Gostekhizdat: Gostekhizdat Moscow-Leningrad · Zbl 0041.32204
[2] Poincaré, A., Curves Defined by Differential Equations (1947), Gostekhizdat: Gostekhizdat Moscow-Leningrad
[3] Movchan, A. A., The stability of the motion of continuous media, Lagrange’s theorem and its inversion, Inzh Sbornik, 29, 3-20 (1960)
[4] Movchan, A. A., Stability of processes with respect to two metrics, JAMM, 24, 6, 1506-1524 (1960) · Zbl 0100.08401
[5] Movchan, A. A., The stability of continuum deformation processes, Arch Mech Stosow, 15, 5, 659-682 (1963) · Zbl 0151.38701
[6] Slobodkin, A. M., On the stability of the equilibrium of conservative systems with an infinite number of degrees of freedom, JAMM, 26, 2, 513-518 (1962) · Zbl 0104.31003
[7] Slobodkin, A. M., The stability of the equilibrium of systems with an infinite number of degrees of freedom in the Lyapunov sense, Dokl Akad Nauk SSSR, 157, 1, 63-65 (1964)
[8] Slobodkin, A. M., Features of the idea of the stability of an equilibrium in the Lyapunov sense for systems with an infinite number of degrees of freedom, Izv Akad Nauk SSSR Ser Mekhanika, 5, 38-46 (1965)
[10] Bolotin, V. V., Non-conservative Problems of the Theory of Elastic Stability (1961), Fizmatgiz: Fizmatgiz Moscow
[11] Vol’mir, A. S., Stability of Elastic Systems (1963), Fizmatgiz: Fizmatgiz Moscow
[12] Guz’, A. N., The Stability of Three-Dimensional Deformable Solids (1971), Naukova Dumka: Naukova Dumka Kiev
[13] Joseph, D. D., Stability of fluid motions (1976), Springer: Springer Berlin etc., Pt. I. 282 p.; Pt II. 274 p · Zbl 0345.76023
[15] Zubov, V. I., The Stability of Motion (Lyapunov Methods and Their Application) (1984), Vyssh Shkola: Vyssh Shkola Moscow
[16] Sirazetdinov, T. K., The Stability of Systems with Distributed Parameters (1987), Nauka: Nauka Novosibirsk · Zbl 0631.93001
[17] Lakshmikantam, V.; Lila, S.; Martynyuk, A. A., Stability: Theory, Methods and Applications (1991), Kiev: Kiev Naukova Dumka · Zbl 0852.34057
[18] Drazin, P. G., Introduction to Hydrodynamic Stability, 258 (2002), Cambridge Univ. Press · Zbl 0997.76001
[19] Zubchaninov, V. G., Stability and Plasticity. Pt. 1. Stability (2007), Fizmatlit: Fizmatlit Moscow
[20] Volkov, S. M., An analog of Lyapunov’s second method in non-linear boundary value problems for hyperbolic equations, Uchen. Zap LGU Ser Mat Nauki, 33, 271, 90-95 (1958)
[21] Sirazetdinov, T. K., The stability of processes with distributed parameters, Trudy KAI (1964), 83. Pt. 1: 16-42. Pt. 2: 43-78
[22] Sirazetdinov, T. K., The theory of the stability of motion of a fluid with constantly acting perturbations, Izv Vuzov Ser Aviats Tekh, 4, 62-74 (1965)
[23] Brayton, R. K.; Miranker, W. L., A stability theroy for nonlinear mixed initial boundary vlue problems, Arch. Rat. Mech. and Anal., 17, 5, 358-376 (1964) · Zbl 0173.36901
[24] Lakshmikantham, V., Parabolic equations and Lyapunov like functions, J. Math. Analysis and Appl., 9, 2, 234-251 (1964) · Zbl 0131.32101
[25] Knops, R. J.; Wilkes, E. W., On Movchan’s theorems for stability of continuous systems, Ing. J. Eng. Sci., 4, 4, 303-329 (1966) · Zbl 0151.39104
[26] Nemat-Nasser, S.; Herrmann, G., On the stability of equilibrium of continuous systems, Ing. -Arch., 35, 1, 17-24 (1966) · Zbl 0139.42602
[27] Gilbert, J. E.; Knops, R. J., Stability of general systems, Arch Rat. Mech. and Anal., 25, 4, 271-284 (1967) · Zbl 0168.06603
[28] Buis, G. R.; Vogt, W. G.; Eisen, M. M., Lyapunov stability for partial differential equations, NASA Contractor Report 1100., 1-113 (1968)
[29] Villaggio, P., A stability criterion for non-linear continua, (Instability of Continuous Systems. Symp. 1969 (1971), Springer: Springer Berlin, etc.), 19-24 · Zbl 0246.73056
[30] Parks, P. C., Some applications of Liapunov functionals, (Instability of Continuous Systems. Symp. 1969 (1971), Springer: Springer Berlin, etc.), 125-131 · Zbl 0233.76100
[31] Pritchard, A. J., On nonlinear stability theory, Quart. J. Appl. Math., 27, 4, 531-536 (1970) · Zbl 0191.40201
[32] Zaitsev, O. M., Extension of theorems on asymptotic stability in the large and as a whole to systems with distributed parameters, Proceedings of the 2nd Seminar-Symposium on the Application of the Method of Lyapunov Functions in Power Engineering, 25-34 (1970), Nauka: Nauka Novosibirsk
[33] Parks, P. C.; Pritchard, A. J., Stability analysis in structural dynamics using Liapunov functionals, J. Sound and Vibrat., 25, 4, 609-621 (1972) · Zbl 0247.73056
[34] Lee, T. H.; Hsu, C. S., Liapunov stability criteria for continuous systems under parametric excitation, Trans. ASME. Ser. E. J. Appl. Mech., 39, 1, 244-250 (1972) · Zbl 0232.73041
[35] Sundararajan, C., A theorem on the stability of elastic systems, ZAMP., 24, 2, 287-290 (1973) · Zbl 0318.73040
[36] Walker, J. A., Energy-like Liapunov functionals for linear elastic systems on a Hilbert space, Quart. J. Appl. Math., 30, 4, 465-480 (1973) · Zbl 0312.73062
[37] Leipholz, H. H.E., Some remarks on Liapunov stability of elastic dynamical systems, (Proc. Symp. “Buckling of Structures” (1974), Springer: Springer Berlin, etc.), 208-216
[38] Plaut, R. H., A study of the dynamic stability of continuous elastic systems by Liapunov’s direct method (1967), Univ. of California: Univ. of California Berkeley, Report No. AM-67-3
[39] Dym, C. L., Stability Theory and its Applicatons to Structural Mechanics, 208 (1974), Noordhoff Int Publ: Noordhoff Int Publ Leyden · Zbl 0328.93016
[40] Bairamov, F. D., The technical stability of systems with distributed parameters with constantly acting perturbations, Izv VUZ Ser Aviats Tekh, 2, 5-11 (1974)
[41] Bairamov, F. D., The technical stability of systems with distributed parameters, Trudy KAI, 171, 36-41 (1974)
[42] Bairamov, F. D., The technical stability of systems with distributed and lumped parameters, Izv VUZ Ser Aviats Tekh, 2, 19-24 (1975)
[43] Martynyuk, A. A., Stability of the Motion of Complex Systems (1975), Naukova Dumka: Naukova Dumka Kiev · Zbl 0435.70011
[44] Sirazetdinov, T. K., Optimization of Systems with Distributed Parameters (1977), Nauka: Nauka Moscow · Zbl 0415.49004
[45] Ahmadi, G., On the mean square stability of a class of nonstationary coupled partial differential equations, Ing. -Arch., 48, 4, 213-219 (1979) · Zbl 0407.35015
[46] Martynyuk, A. A., The stability and instability of systems of processes with respect to two multivalued measures, Prikl Mekhanika, 17, 2, 104-109 (1981) · Zbl 0473.93053
[47] Martynyuk, A. A.; Podil’chuk, V. D., The practical asymptotic stability of process systems, Prikl. Mekhanika, 19, 1, 89-94 (1983) · Zbl 0531.93048
[48] Martynyuk, A. A.; Podil’chuk, V. D., The stability of systems of processes with respect to two vector measures, Prikl. Mekhanika, 20, 3, 93-100 (1984)
[49] Matviichuk, K. S., The technical stability of parametrically excited distributed processes, JAMM, 50, 2, 154-160 (1986) · Zbl 0635.73061
[50] Babin, A. V.; Vishik, M. I., Attractors of Evolution Equations (1989), Nauka: Nauka Moscow · Zbl 0804.58003
[51] Shestakov, A. A., The Generalized Lyapunov Direct Method for Systems with Distributed Parameters (1990), Nauka: Nauka Moscow · Zbl 0688.93043
[52] Como, M.; Grimaldi, A., Theory of Stability of Continuous Elastic Structures, 272 (1995), CRC press: CRC press Boca Raton, FL · Zbl 0856.73023
[53] Matviichuk, K. S., Determination of the conditions for the technical stability of parametrically excited distributed systems, Izv NAN Armenii Mekhanika, 52, 3, 23-32 (1999)
[54] Padula, M., Free work and control of equilibrium configurations, Annali dell Universita di Ferrara., 49, 1, 375-396 (2003) · Zbl 1232.74005
[55] Lavrent’ev, M. M., The solution of parabolic equations in terms of Lyapunov functionals, Sib Mat Zhurnal, 46, 5, 1085-1099 (2005) · Zbl 1114.35092
[56] Ryzhak, E. I., A theorem of instability by linear approximation for a one-dimensional non-linearly elastic body, JAMM, 70, 5, 769-785 (2006)
[57] Michel, A. N.; Ling Hou; Derong, Liu., Stability of Dynamical System, 501 (2008), Birkhäuser: Birkhäuser Boston etc · Zbl 1146.34002
[58] Druzhinina, O. V.; Afanas’eva, V. I., Investigation of the stability of some classes of distributed systems, Nelineinyi Mir, 9, 554-562 (2010)
[59] Plaut, R. H., Asymptotic stability and instability criteria for some elastic systems by Liapunov’s direct method, Quart. J. Appl. Math., 29, 4, 535-540 (1972) · Zbl 0241.73021
[60] Movchan, A. A., The direct method of Lyapunov in stability problems of elastic systems, JAMM, 23, 3, 686-700 (1959) · Zbl 0090.31302
[61] Leipholz, H. H.E., Über die Anwendung der Methoden von Ljapunow auf Stabilitätsprobleme der Elastostatik, Ing. -Arch., 35, 3, 181-191 (1966) · Zbl 0145.45405
[62] Leipholz, H. H.E.; Huseyin, K., On the stability of one-dimensional continuous systems with poly-genic forces, Meccanica., 6, 4, 253-257 (1971) · Zbl 0256.73018
[63] Infante, E. F.; Plaut, R. H., Stability of a column subjected to a time-dependent axial load, NASA CR, 97627, 13 (1968)
[64] Plaut, R. H.; Infante, E. F., On the stability of some continuous systems subjected to random excitation, NASA CR, 100369., 29 (1970) · Zbl 0201.27401
[65] Kozin, E., Stability of linear stochastic systems (1972), Springer: Springer Berlin, Lecture Notes in Math. V. 294. P 186-229 · Zbl 0294.70029
[66] Leipholz, H., Application of Liapunov’s direct method to the stability problem of rods subject to follower forces, (Instability of Continuous Systems. Symp. 1969 (1971), Springer: Springer Berlin, etc.), 1-10 · Zbl 0245.73039
[67] Hsu, C. S.; Lee, T. H., A stability study of continuous systems under parametric excitation via Liapunov’s direct method, (Instability of Continuous Systems. Symp. 1969 (1971), Springer: Springer Berlin, etc.), 112-118 · Zbl 0232.73042
[68] Holzer, S. M., Response bounds for columns with transient loads, Trans. ASME. J. Appl. Mech., 38, 1, 157-161 (1971)
[69] Walker, J. A., Liapunov analysis of the generalized Pflüger problem, Trans. ASME. J. Appl. Mech., 39, 4, 935-938 (1972) · Zbl 0248.73021
[70] Walker, J. A., Stability of a pin-ended bar in torsion and compression, Trans. ASME J. Appl. Mech., 40, 2, 405-410 (1973) · Zbl 0274.73031
[71] Leipholz, H. H.E., On conservative elastic systems of the first and second kind, Ing. -Arch., 43, 5, 255-271 (1974) · Zbl 0305.73033
[72] Leipholz, H. H.E., Stability of elastic rods via Liapunov’s second method, Ing. -Arch., 44, 1, 21-26 (1975) · Zbl 0295.73041
[73] Leipholz, H. H.E., Stability of Elastic Structures CISM Courses and Lectures. Part III (1978), Springer: Springer Wien N.-Y, No. 238. 99 p · Zbl 0407.73001
[74] Leipholz, H. H.E., On the use of Hamiltonian for an evalution of the stability of elastic systems subjected to follower forces, Ing. -Arch., 50, 6, 413-426 (1981) · Zbl 0478.73027
[75] Leipholz, H. H.E., On a generalization of the lower bound theorem for elastic rods and plates subjected to compressive follower forces, Comput. Method in Appl. Mech. and Engng., 27, 1, 101-120 (1981) · Zbl 0506.73049
[76] Tylikowski, A., Dynamic stability of rotating shafts, Ing. -Arch., 50, 1, 41-48 (1981) · Zbl 0452.73026
[77] Parks, P. C.; Pritchard, A. J., On the construction and use of Liapunov functionals, (Proc. 4th IFAC Congress. Tech. Session 20. Warsaw (1969)), 59-73
[78] Baillieul, J.; Levi, M., Rotational elastic dynamics, Physica D: Nonlinear phenomena., 27, 1-2, 43-62 (1987) · Zbl 0644.73054
[79] Varadi, P. C., Conditions for stability of rotating elastic rods, Proc. Roy. Soc. Lond. Ser. A., 457, 1701-1720 (2001) · Zbl 1040.74031
[80] Pavlovic, R.; Rajkovic, P.; Pavlovic, I., Dynamic stability of the viscoelastic rotating shaft subjected to random excitation, Int. J. Mech. Sci., 50, 359-364 (2008) · Zbl 1264.74117
[81] Tylikowski, A., Stability of hybrid rotating shaft with simply supported and/or clamped ends in a weak formulation, J. Theoret. and Appl. Mech., 46, 993-1007 (2008)
[82] Miller, S. E., Distributed Parameter Active Vibration Control of Smart Structures. Thesis for the degree of master of science in mechanical engineering, 100 (1988), Institute of Technology: Institute of Technology Massachusetts
[83] Plaut, R. H., Lyapunov stability of columns, pipes and rotating shafts under time-dependent excitation, Dynamics and Stability of Systems., 9, 1, 89-94 (1994) · Zbl 0800.93593
[84] Min, J., Plastic dynamic stability of a column under nonconservative forces, Appl. Math. and Mech. (English Edition), 18, 4, 399-405 (1997) · Zbl 0899.73174
[85] Jiki, P. N., Buckling analysis of pre-cracked beam-columns by Liapunov’s second method, Europ. J. Mech. Ser. A. Solids., 26, 503-518 (2007) · Zbl 1187.74072
[86] Domanskii, P. P., Optimization of the shape of rods in problems on their stability with respect to two measures subject to restrictions on minimum admissible values of cross sections, Mashinozn, 3, 14-22 (2002)
[87] Domanskii, P. P.; Soroka, YeI., Optimization of the shape of hinge supported elastic rods in problems of their stability with respect to two measures, Mat Metody ta Fiz-Mekh Polya, 45, 3, 148-155 (2002) · Zbl 1122.74417
[88] Domanskii, P. P., Optimization of the shape of hinge supported spring-loaded rods in problems of their stability with respect to two measures, Dop NAN Ukraini, 2, 50-56 (2003) · Zbl 1136.74337
[89] Domanskii, P. P., Optimization with respect to two measures of the shape of elastic bodies in stability problems, Fiz-Mat Model ta Inform Tekhnol, 2, 27-42 (2005)
[90] Tylikowski, A., Liapunov functionals application to dynamic stability analysis of continuous systems, Nonlinear Analysis., 63, 169-183 (2005) · Zbl 1159.60331
[91] Pavlovic, R.; Kozic, P.; Rajkovic, P., Influence of randomly varying damping coefficient on the dynamic stability of continuous systems, Europ. J. Mech. Ser. A. Solids., 24, 1, 81-87 (2005) · Zbl 1063.74051
[92] Ngo, Q. H.; Nguyen, Q. C.; Hong, K. S., Adaptive boundary control of an axially moving string under the effect of boundary disturbance, ICCAD-SICE Int. Joint Conf., 304-309 (2009)
[93] Tylikowski, A., Nonlocal analysis of dynamic instability of micro-and nano-roids, Machine Dynam. Probl., 33, 1, 104-113 (2009)
[94] Movchan, A. A., The basis of certain criteria of the stability of the equilibrium of plates, Inzh Zh., 5, 4, 773-777 (1965) · Zbl 0938.35621
[95] Hegemier, G. A., Stability of cylindrical shells under moving loads by the direct method of Liapunov, Trans. ASME. Ser. E.J. Appl. Mech., 34, 4, 991-998 (1967) · Zbl 0189.25904
[96] Leipholz, H. H.E.; Stabilitätstheorie, Eine Einfuhrung in die Theorie der Stabilität dynamischer Systeme und fester Körper, 245 (1968), B.G. Tauber: B.G. Tauber Stuttgart · Zbl 0169.27101
[97] Leipholz, H. H.E., Stability of elastic plates via Liapunov’s second method, Ing. -Arch., 45, 5-6, 337-345 (1976) · Zbl 0343.73029
[98] Leipholz, H. H.E., Stability of a rectangular simply supported plate subjected to nonincreasing tangential follower forces, Trans. ASME. Ser. E.J. Appl. Mech., 45, 1, 223-224 (1978)
[99] Leipholz, H. H.E., On a Liapunov-like approach to the stability limit of Pflüger’s rod, Mech. Research Commun., 7, 115-118 (1980) · Zbl 0433.34039
[100] Leipholz, H. H.E., On a Liapunov-like approach to the stability of Pflüger-like plates, Ing. -Arch., 52, 39-46 (1982) · Zbl 0506.73051
[101] Leipholz, H. H.E.; Über dia Anwendung von Liapunovs direkter Methode auf Stabilitätprobleme kontinuierlicher, nichtkonservativer Systeme, Ing. -Arch., 39, 6, 357-368 (1970) · Zbl 0207.24301
[102] Leipholz, H. H.E., Stability of elastic, cylindrical shells via Liapunov’s second method, Ing. -Arch., 49, 1, 7-14 (1980) · Zbl 0452.73025
[103] Leipholz, H. H.E., Liapunov stability of contionuous elastic systems and its topological foundations, Acta Mech., 45, 135-162 (1982) · Zbl 0506.73050
[104] Möller, T. L., The dynamics of a Spinning Elastic Disk with Massive Load. Thesis for the degree of doctor of philosophy, 111 (1973), California Institute of Technology: California Institute of Technology Pasadena, California
[105] Nowinski, J. L., On the Liapunov-Movchan stability of equilibrium of elastic orthotropic plates, Acta. Mech., 47, 27-38 (1983) · Zbl 0522.73037
[106] Leipholz, H. H.E., Liapunov’s second method and its application to continuous systems, SM Archives., 1, 367-444 (1976) · Zbl 0404.73036
[107] Min, J., On the Liapunov’s stability of a clamped orthotropic round plate under radial axisymmetrical impact load, Appl. Math. and Mech. (English Edition), 17, 2, 149-153 (1996) · Zbl 0848.73030
[108] Tylikowski, A., Dynamic stability of functionally graded plate under in-plane compression, Mathematical Problems in Engineering., 4, 411-424 (2005) · Zbl 1200.74082
[109] Tylikowski, A., Dynamic stability of nonlinear antisymmetrically-laminated cross-ply rectangular plates, Trans. ASME. J. Appl. Mech., 56, 2, 375-381 (1989) · Zbl 0709.73032
[110] Tylikowski, A., Dynamic stability of weak equations of rectangular plates, J. Theoret. and Appl. Mech., 46, 3, 679-692 (2008)
[111] Domanskii, P. P., Investigation of stability of motion with respect to two measures for elastic cylindrical solids, Mat Metody ta Fiz-Mekh Polya, 41, 3, 29-36 (1998) · Zbl 1044.74519
[112] Domanskii, P. P., The conditions for stability of the motion with respect to two measures for elastic solids in the linearized formulation of the problem, Visnik L’viv Univ Ser Mekh-Mat, 51, 42-54 (1998) · Zbl 0930.35028
[113] Domanskii, P. P.; Zhuplan, YuB., Stability with respect to two measures for elastic cylindrical solids taking account of weight forces, Mat Metody ta Fiz-Mekh Polya, 42, 4, 104-110 (1999) · Zbl 1047.74505
[114] Burak YaI.; Domanskii, P. P.; Ardan, R. V., Stability with respect to two measures of cylindrical elastic bodies compressed by axial forces, Prikl Mekhanika, 36, 8, 79-86 (2000) · Zbl 1113.74358
[115] Burak YaI.; Domanskii, P. P., The optimal shape of spring-loaded bodies in problems of their stability with respect to two measures, Dop NAN Ukraini, 12, 40-46 (2001) · Zbl 1092.74531
[116] Domanskii, P. P.; Voloshenyuk, A. V., The increase of critical parameters in problems of the stability with respect to two measures for elastic cylindrical solids, Mat Metody ta Fiz-Mekh Polya, 45, 1, 129-137 (2002)
[117] Slemrod, M.; Infante, E. F., An invariance principle for dynamical systems on Banach space: application to the general problem of thermoelastic stability, Instability of Continuous Systems. Symp. 1969, 215-221 (1971), Springer: Springer Berlin, etc · Zbl 0236.73066
[118] Nemat-Nasser, S., Thermoelastic stability of a finitely deformed solid under nonconservative loads, Instability of Continuous Systems. Symp. 1969, 256-262 (1971), Springer: Springer Berlin etc. · Zbl 0233.73005
[119] Ball, J. M., Material instabilities and the calculus of variations, Proc. Conf. on Phase Transformations and Material Instabilities in Solids, 1-20 (1984), Acad. Press: Acad. Press Univ. Wisconsin, No. 52 · Zbl 0591.73021
[120] Knops, R. J.; Wilkes, E. W., Theory of elastic stability Encyclopedia of Physics (Handbuch der Physik), 6, 125-302 (1973), Springer: Springer Berlin, etc., a/3
[121] Tylikowski, A., Dynamic stability of carbon nanotubes, Mechanics and Mechanical Engng., 10, 160-166 (2006)
[122] Tylikowski, A., Instability of thermally induced vibrations of carbon nanotubes, Arch. Appl. Mech., 78, 49-60 (2008) · Zbl 1161.74405
[123] Tylikowski, A., Stochastic instability of carbon nanotubes via nonlocal continuum mechanics, (Proc. Intern. Conf. on Stochastic Methods in Mechanics: Status and Challenges. Warsaw (2009)), 57-59
[124] Tylikowski, A., Dynamic stability of carbon nanotubes using nonlocal Euler - Bernoulli model, World J. Engng., 7, 2, 342-343 (2010)
[125] Tylikowski, A., Instability of thermally induced vibrations of carbon nanotubes via nonlocal elasticity, J. Thermal Stresses., 35, 1-3, 281-289 (2012)
[126] Anil, A. B.; Chandrakant, S. B., A study of thermodynamic stability of deformation in visco-elastic fluids by Lyapunov function analysis, J. Non-Equilibrium Thermodynamics., 30, 1, 53-65 (2005) · Zbl 1084.76032
[127] Wang, P. K.C., Application of Lyapunov’s direct method to stability problems in elastic and aeroelastic systems, IBM Research Rept., RJ-305, 29-64 (1964)
[128] Wang, P. K.C., Stability analysis of a simplified pitch-controlled flexible aerodynamic vehicle via Lyapunov’s direct method, Final Tech. Documentary Rept. for contract No. AF 33(657)-11545, 72-83 (1965), IBM Research Lab. San Jose, Calif.
[129] Wang, P. K.C., Stability analysis of a simplified flexible vehicle via Lyapunov’s direct method, AIAA Journal., 3, 9, 1764-1766 (1965)
[130] Wang, P. K.C., Stability analysis of a simplified pitch-controlled flexible aerodynamic vehicle with pitch autopilot via Lyapunov’s direct method, Final Tech. Documentary Report, U.S. Air Force Contract AF 33(657)-11545, 72-83 (1965), IBM Research Lab., San Jose, Calif.
[131] Wang, P. K.C., Stability analysis of elastic and aeroelastic system via Lyapunov’s direct method, J. Franklin Inst., 281, 1, 51-72 (1966) · Zbl 0148.20102
[132] Parks, P. C., Liapunov functionals for aeroelastic problems, J. Franklin Inst., 283, 5, 426-429 (1967)
[133] Movchan, A. A., On one problem of stability of a pipe with a fluid flowing through it, JAMM, 29, 4, 902-904 (1965) · Zbl 0154.22804
[134] Parks, P. C., A stability criterion for panel flutter via the second method of Liapunov, AIAA Journal., 4, 1, 175-177 (1966)
[135] Parks, P. C., A stability criterion for a panel flutter problem via the second method of Liapunov, Proc. Int. Symp. Differential Equations and Dynamical Systems, 287-298 (1967), Acad. Press: Acad. Press Puerto Rico N.Y
[136] Webb, G. R.; Bass, B. R.; Goodman, C. H.; Land, K. M., Further study on “A stability criterion for panel flutter via the second method of Liapunov”, AIAA Journal., 5, 11, 2084-2085 (1967)
[137] Parks, P. C., Some application of second method of Lyapunov to dynamical systems described by partial differential equations, Acta Facultatis Rerum Natur. Univ. Comen. Math., 17, 281-287 (1967) · Zbl 0186.16406
[138] Walker, J. A.; Dixon, M. W., Stability of general plane membrane adjacent to a supersonic airstream, Trans. ASME. J. Appl. Mech., 40, 2, 395-398 (1973) · Zbl 0264.73065
[139] Dixon, M. W., Liapunov functionals for nonconservative distributed parameter linear elastic systems. Ph. D. dissertation, Department of Mech. Engng and Astron. Sci. (1971), Northwestern Univ.
[140] Matviichuk, K. S., Technical stability of the panel motion in a gas flow stream, J App Mech Tech Phys, 29, 6, 849-855 (1988)
[141] Matviichuk, K. S., Technical stability of parametrically excited panels in a gas glow, Intern. Appl. Mech., 25, 6, 596-603 (1989) · Zbl 0713.76060
[142] Matviichuk, K. S., The conditions for the technical stability of continuous moving systems, interacting with a fluid flow, Izv NAN Armenii Mekhanika, 54, 3, 37-46 (2001)
[143] Matviichuk, K. S., Technical stability of dynamic states of controlled elastic aircraft, Intern. Appl. Mech., 37, 4, 550-563 (2001) · Zbl 1034.34063
[144] Matviichuk, K. S., Technical stability of nonlinear states of an elastic vehicle in vertical flight, J Appl Mech Tech Phys, 43, 3, 475-487 (2002) · Zbl 1019.74017
[145] Ankilov, A. V., Vel’misov. The Stability of the Viscoelastic Components of the Walls of Circulating Channels (2000), UlGTU: UlGTU Ul’yanovsk
[146] Vel’misov, P. A.; Molgachev, A. A., Dynamic stability of the viscoelastic components of the separating wall of a channel, Trudy Srednevolzh Mat Obshch Saransk, 7, 1, 138-145 (2005) · Zbl 1150.74426
[147] Ayfer, Kurt., Asymptotic behavior of the zero solutions to generalized pipe and rotating shaft equations, Türk. J. Math., 24, 67-80 (2000) · Zbl 0968.35018
[148] Il’yushin, A. A.; Kiiko, I. A., A new formulation of the problem of the flutter of a shallow shell, JAMM, 58, 3, 545-549 (1994) · Zbl 0880.73041
[149] Kiiko, I. A., Formulation of the problem of the flutter of a shell of revolution and a shallow shell in a high-velocity supersonic gas flow, JAMM, 63, 2, 305-312 (1999) · Zbl 1073.74583
[150] Vedeneev, V. V., High-frequency flutter of a rectangular plate, Fluid Dynamics, 41, 4, 641-648 (2006) · Zbl 1201.76072
[151] Algazin, S. D.; Kiiko, I. A., Flutter of Plates and Shells (2006), Nauka: Nauka Moscow
[152] Ankilov, A. V.; Vel’misov, P. A., Dynamics and Stability of Elastic Plates under Aerodynamic Action (2009), UlGTU: UlGTU Ul’yanovsk · Zbl 1230.74073
[153] Vel’misov, P. A.; Ankilov, A. V.; Zakharova, A. B., Dynamics and stability of the elastic aileron of a wing in a subsonic streamline flow, (Proc. 6th Int. Conf. “Analytic and Numerical Methods of Modeling Natural Science and Social Problems”. Proc. 6th Int. Conf. “Analytic and Numerical Methods of Modeling Natural Science and Social Problems”, Penza: Privolzhskii Dom Izdanii (2011)), 107-111
[154] Ankilov, A. V.; Vel’misov, P. A.; Sagdeeva, YuK., Stability of the elastic component of a channel wall, (Proc. 6th Int. Conf. “Analytic and Numerical Methods of Modeling Natural Science and Social Problems”. Proc. 6th Int. Conf. “Analytic and Numerical Methods of Modeling Natural Science and Social Problems”, Penza: Privolzhskii Dom Izdanii (2011)), 101-104
[155] Kvachev, K. V., The Lyapunov-Movchan method in the problem of the stability of the vibrations of a plate, Vestnik MGU Ser Mat Mekh, 6, 62-65 (2011) · Zbl 1433.74054
[156] Kvachev, K. V., The Lyapunov-Movchan method in the problem of the stability of the vibrations of a cylindrical shell, Vestnik Chuvash Gos Ped Univ Ser Mekh Predel Sostoyaniya, 12, 2, 57-65 (2012)
[157] Pritchard, A. J., A study of two o the classical problems of hydrodynamic stability by the Liapunov method, J. Inst. Maths. Applic., 4, 1, 78-93 (1968) · Zbl 0159.58703
[158] Sinha, S. C.; Carmi, S., On the Liapunov-Movchan and the energy theories of stability, ZAMP., 27, 5, 607-612 (1976) · Zbl 0359.76042
[159] Shir, C. C.; Joseph, D. D., Convective instability in a temperature and concentration field, Arch. Rat. Mech. Anal., 30, 1, 38-80 (1968) · Zbl 0172.54903
[160] Capone, F.; Gentile, M., Nonlinear stability analysis of convection for fluids with exponentially temperature-dependent viscosity, Acta Mech., 107, 1, 53-54 (1994) · Zbl 0846.76033
[161] Goodarz Ahmadi, Stability of a hydromagnetic fluid layer in the presence of temperature and concentration gradients in a rotating frame of reference, Energy Conversion., 16, 3, 143-147 (1977)
[162] Mulone, G.; Rionero, S., Necessary and sufficient conditions for nonlinear stability in the magnetic Benard problem, Arch. Rat. Mech. Anal., 166, 3, 197-218 (2003) · Zbl 1022.76020
[163] Lombardo, S.; Mulone, G., Necessary and sufficient stability conditions via the eigenvalues-eigenvectors method: an application to the magnetic Benard problem, Nonlinear Analysis., 63, 5-7, 2091-2101 (2005) · Zbl 1224.76063
[164] Galdi, G. P.; Straughan, B. A., nonlinear analysis of the stabilizing effect of rotation in the Benard problem, Proc. Royal Soc. Lond. Ser. A., 402, 1823, 257-283 (1985) · Zbl 0593.76049
[165] Mulone, G.; Rionero, S., On the nonlinear stability of rotating Benard problem via the Lyapunov direct method, J. Math. Analysis and Appl., 144, 1, 109-127 (1989) · Zbl 0682.76037
[166] Galdi, G. P., Non-linear stability of the magnetic Benard problem via a generalized energy method, Arch. Rat. Mech. Anal., 87, 2, 167-186 (1985) · Zbl 0611.76069
[167] Rionero, S., Sulla stabilita asintotica in media in magnetoidrodinamica, Ann. Mat. Pura Appl., 76, 75-92 (1967) · Zbl 0158.45104
[168] Rionero, S., Metodi variazionali per la stabilita asintotica in media in magnetoidrodinamica, Ann. Mat. Pura Appl., 78, 339-364 (1968) · Zbl 0182.29402
[169] Rionero, S., Sulla stabilita magnetodinamica non lineare asintotica in media con varitipi di ondizionial contorno, Ricerche Mat., 17, 64-78 (1968) · Zbl 0172.55302
[170] Galdi, G. P.; Payne, L. E.; Proctor, M. R.E.; Straughan, B., Convection in thawing subsea permafrost, Proc. Royal Soc. Lond. Ser. A., 414, 83-102 (1987) · Zbl 0645.76055
[171] Rionero, S., On the choice of the Lyapunov function in the stability of fluid motions, Energy Stability and Convection, 392-419 (1986), Wiley: Wiley N.-Y · Zbl 0689.76015
[172] Rionero, S.; Mulone, G. A., non-linear stability analysis of the magnetic Benard problem via the Lyapunov direct method, Arch. Rat. Mech. Anal., 103, 2, 347-368 (1988) · Zbl 0666.76068
[173] Rionero, S.; Mulone, G., On the stability of a mixture in a rotating layer via the Lyapunov second method, ZAMM., 69, 12, 441-446 (1989) · Zbl 0699.76061
[174] Galdi, G. P.; Padula, M. A., new approcah to energy theory in the stability of fluid motion, Arch. Rat. Mech. Anal., 110, 3, 187-286 (1990) · Zbl 0719.76035
[175] Galdi, G. P.; Straughan, B., Exchange of stabilities, symmetry and nonlinear stability, Arch. Rat. Mech. Anal., 89, 3, 211-228 (1985) · Zbl 0622.76061
[176] Qin, Y.; Kaloni, P. N., Nonlinear stability problem of a rotating porous layer, Quart. J. Appl. Math., 53, 1, 129-142 (1995) · Zbl 0816.76035
[177] Lombardo, S.; Mulone, G.; Straughan, B., Nonlinear stability in the Benard problem for a double-diffusive mixture in a porous medium, Math. Met. Appl. Sci., 24, 16, 1229-1246 (2001) · Zbl 0997.76029
[178] Mulone, G., On the stability of a plane parallel convective mixture through the Lyapunov second method, Atti. Accad. Peloritana dei Peloritana dei Pericolanti., 68, 491-516 (1991) · Zbl 0749.76025
[179] Joseph, D. D., Nonlinear stability of the Boussinesq equations by the method of energy, Arch. Rat. Mech. Anal., 22, 3, 163-184 (1966) · Zbl 0141.43803
[180] Mulone, G., On the Lyapunov stability of a plane parallel convective flow of a binary mixture, Le Matematiche., 46, 1, 283-294 (1991) · Zbl 0756.76027
[181] Mulone, G., On the stability of a plane parallel convective flow, Acta. Mech., 87, 153-162 (1991) · Zbl 0737.76030
[182] Mulone, G., On the nonlinear stability of a fluid layer of a mixture heated and salted from below, Continuum Mech. Thermodyn., 6, 161-184 (1994) · Zbl 0809.76034
[183] Straughan, B., The Energy Method, Stability, and Nonlinear Convection, 242 (1992), Springer: Springer Berlin · Zbl 0743.76006
[184] Mulone, G.; Rionero, S., The rotating Benard problem: new stability results for any Prandtl and Taylor numbers, Continuum Mech. Thermodyn., 9, 347-363 (1997) · Zbl 0906.76023
[185] Mulone, G.; Rionero, S., Unconditional nonlinear exponential stability in the Benard problem for a mixture: necessary and sufficient conditions, Rend. Mat. Acc. Lincei., 9, 9, 221-236 (1998) · Zbl 0922.76171
[186] Flavin, J. N.; Rionero, S., Nonlinear stability for a thermofluid in a vertical porous slab, Continuum Mech. Thermodyn., 11, 173-179 (1999) · Zbl 0947.76029
[187] Flavin, J. N.; Rionero, S., The Benard problem for nonlinear heat conduction: unconditional nonlinear stability, Quart. J. Mech. and Appl. Math., 52, 3, 441-452 (1999) · Zbl 0963.76032
[188] Lombardo, S.; Mulone, G., Necessary and sufficient conditions fo global nonlinear stability for rotating double-diffusive convection in a porous medium, Continuum Mech. Thermodyn., 14, 527-540 (2002) · Zbl 1040.76024
[189] Lombardo, S., Stability in the Benard problems with competing effects via the reduction method, (Proc. 14th Conf. on Waves and Stability in Continuous Media. Proc. 14th Conf. on Waves and Stability in Continuous Media, Baia Samuele, Sicily, Italy, Wascom (2007)), 372-377 · Zbl 1284.76143
[190] Palese, L.; Georgescu, A., Lyapunov method applied to the anisotropic Benard problem, J. Math. Sci. Res., 8, 7, 196-204 (2004) · Zbl 1112.76035
[191] Palese, L., On the nonlinear stability of the MHD anisotropic enrd problem, Int. J. Engng. Sci., 43, 1265-1282 (2005) · Zbl 1211.76060
[192] Lanxi, Xu., A new energy functional for nonlinear stability of the classical Benard problem, Le Matematiche., 41, 2, 385-394 (2006) · Zbl 1195.46078
[193] Joseph, D. D., On the place of energy methods in a global theory of hydrodynamic stability, Instability of Continuous Systems. Symp. 1969, 132-142 (1971), Springer: Springer Berlin ect. · Zbl 0233.76096
[194] Clever, R. M.; Busse, F. H., Three-dimensional knot convection in a layer heated from blow, J. Fluid Mech., 189, 345-363 (1989) · Zbl 0662.76105
[195] Rumyantsev, V. V., On the stability of rotation of a top with a cavity filled with a viscous liquid, JAMM, 24, 4, 903-912 (1960)
[196] Millner, A. R., Nonlinear Feedback Control of Continuum Systems. Thesis for the degree of doctor of science, 408 (1972), Massachusetts Inst. of Technology
[197] Padula, M.; Pokorny, M., Stability and decay to zero of the \(L^2\)-norms of perturbations to a viscous compressible heat conductive fluid motion exteror to a ball, J. Math. Fluid Mech., 3, 4, 342-357 (2001) · Zbl 0993.76073
[198] Padula, M., Stability properties of regular flows of heat-conducting compressible fluids, J. Math. Kyoto Univ., 32, 2, 401-442 (1992) · Zbl 0764.76058
[199] Guda, S. A.; Yudovich, V. I., The combined problem of the rotation of a rigid body in a viscous liquid acted upon by an elastic force, Sib Mat Zhurnal, 48, 3, 556-576 (2007) · Zbl 1164.35459
[200] Stepanov, K. N.; Khomenyuk, V. V., On the stability conditions of magnetohydrodynamic equilibrium configurations, JAMM, 26, 3, 695-702 (1962) · Zbl 0124.20604
[201] Shoureshi, R., Diagnostics Intelligent Control of MPD Engines, 141 (1988), California Defense Technical Information Center
[202] Vergori, L., Linear and Nonlinear Stability in Non-Standard Theories of Fluid Dynamics. Tesi presentata per il conseguimento del titolo di Dottore di Ricerca, 116 (2008), Univ. del Salento
[203] Gubarev, Yu. G., On the stability of jetlike magnetohydrodynamic flows, J. appl. and Industr. Math., 4, 3, 318-331 (2010)
[204] Rionero, S.; Mulone, G., On the non-linear stability of parallel shear flows, Continuum Mech. Thermodyn., 3, 1-11 (1991) · Zbl 0760.76034
[205] Rionero, S.; Maiellaro, M., On the stability of Couette-Poiseuille flows in the anisotropic MHD via the Liapunov direct method, Rend. Acc. Sc. fis. mat. Napoli., 62, 315-332 (1995) · Zbl 1162.76348
[206] Kloosterziel, R. C.; Carnevale, G. F., Generalized energetics for inertially stable parallel shear flows, J. Fluid Mech., 585, 117-126 (2007) · Zbl 1119.76028
[207] Padula, M., On direct Lyapunov method in continuum theories, Nonlinear Problems in Mathematical Physics and Related Topics. Pt I N.Y. etc., 289-303 (2002) · Zbl 1046.35089
[208] Padula, M., Asymptotic Stability of Steady Compressive Fluids, Lecture Notes in Math, 2024, 235 (2011), Springer: Springer Berlin, etc · Zbl 1227.76003
[209] Buis, G. R.; Vogt, W. G., Application of Lyapunov stability theory to some nonlinear problems in hydrodynamics, NASA Contractor report NASA CR-894, 1-20 (1967)
[210] Galdi, G. P.; Rionero, S., Weighted energy methods in fluid dynamics and elasticity, Lecture Notes in Mathematics, 1134, 126 (1985), Springer: Springer Berlin, etc · Zbl 0585.76001
[211] Padula, M., On the exponential stability of the rest state of a viscous compressible fluid, J. Math. Fluid. Mech., 1, 1, 62-77 (1999) · Zbl 0930.35138
[212] Fruman, M. D., Equatorial Symmetric Stability. Thesis for the degree of Doctor of Philosophy, 178 (2005), University of Toronto
[213] Dymnikov, V. P., The Stability and Predictability of Large-Scale Atmospheric Processes (2007), IVM Ross Akad Nauk: IVM Ross Akad Nauk Moscow
[214] Kloosterziel, R. C., Viscous symmetric stability circular flows, J. Fluid. Mech., 652, 171-193 (2010) · Zbl 1193.76054
[215] Georgiyevskii, D. V., The stability of deformation processes with respect to sets of measures of specified classes of perturbations, Izv Ross Akad Nauk MTT, 2, 69-92 (1997)
[216] Georgievskii, D. V., The Stability of Viscoplastic Solid Deformation Processes (1998), URSS: URSS Moscow
[217] Georgievskii, D. V., The problem of the stability of quasilinear flows with respect to perturbations of the hardening function, JAMM, 63, 5, 779-784 (1999) · Zbl 1019.74005
[218] Pobedrya, BYe., The Mechanics of Composite Materials (1984), Izd MGU: Izd MGU Moscow · Zbl 0555.73069
[219] Il’yushin, A. A., The stability of plates and shells outside the elasticity limit, Prikl Mat Mekh, 8, 5, 337-360 (1944) · Zbl 0063.02961
[220] Panovko, YaG., The Mechanics of a Deformable Solid. Present Concepts, Errors and Paradoxes (1985), Nauka: Nauka Moscow
[221] Lokhin, V. V.; Sedov, L. I., Non-linear tensor functions of several tensor arguments, JAMM, 27, 3, 393-417 (1963) · Zbl 0291.15025
[222] Pobedrya, BYe., The Mechanics of Composite Materials (1984), Izd MGU: Izd MGU Moscow · Zbl 0555.73069
[223] Georgievskii, D. V., Non-linear isotropic tensor functions in the theory of defining relations, Dokl Ross Akad Nauk, 366, 4, 483-485 (1999) · Zbl 1065.74504
[224] Georgievskii, D. V., On the linearization of the constitutive relations tensorially nonlinear isotropic media, Mech Solids, 36, 5, 14-17 (2001)
[225] Georgievskii, D. V., Tensor non-linear effects in the isothermal deformation of continuous media, Uspekhi Mekhaniki, 1, 2, 150-176 (2002)
[226] Georgievskii, D. V., Isotropic nonlinear tensor functions in the theory of constitutive relations, J. Math. Sci., 112, 5, 4498-4516 (2002) · Zbl 1161.74304
[227] Georgievskii, D. V., Perturbations of flows of incompressible nonlinearly viscous and viscoplastic fluids caused by variations in material functions, Mech Solids, 42, 3, 375-381 (2007)
[228] Georgievskii, D. V., Perturbation of constitutive relations in tensor non-linear materials, Mech. Adv. Mater. Structures., 15, 6, 528-532 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.