×

Manifolds of mappings on Cartesian products. (English) Zbl 1484.58005

Summary: Given smooth manifolds \(M_1,\ldots, M_n\) (which may have a boundary or corners), a smooth manifold \(N\) modeled on locally convex spaces and \(\alpha \in ({{\mathbb{N}}}_0\cup \{\infty \})^n\), we consider the set \(C^\alpha (M_1\times \cdots \times M_n,N)\) of all mappings \(f:M_1\times \cdots \times M_n\rightarrow N\) which are \(C^\alpha\) in the sense of Alzaareer. Such mappings admit, simultaneously, continuous iterated directional derivatives of orders \(\le \alpha_j\) in the \(j\) th variable for \(j\in \{1,\ldots , n\} \), in local charts. We show that \(C^\alpha (M_1\times \cdots \times M_n,N)\) admits a canonical smooth manifold structure whenever each \(M_j\) is compact and \(N\) admits a local addition. The case of non-compact domains is also considered.

MSC:

58D15 Manifolds of mappings
22E65 Infinite-dimensional Lie groups and their Lie algebras: general properties
26E15 Calculus of functions on infinite-dimensional spaces
26E20 Calculus of functions taking values in infinite-dimensional spaces
46E40 Spaces of vector- and operator-valued functions
46T20 Continuous and differentiable maps in nonlinear functional analysis
58A05 Differentiable manifolds, foundations

References:

[1] Alzaareer, H., Differential calculus on multiple products, Indag. Math., 30, 1036-1060 (2019) · Zbl 1461.46036 · doi:10.1016/j.indag.2019.07.008
[2] Alzaareer, H., Lie groups of \(C^k\)-maps on non-compact manifolds and the fundamental theorem for Lie group-valued mappings, J. Group Theory, 24, 1099-1134 (2021) · Zbl 1496.22012 · doi:10.1515/jgth-2018-0200
[3] Alzaareer, H.; Schmeding, A., Differentiable mappings on products with different degrees of differentiability in the two factors, Expo. Math., 33, 184-222 (2015) · Zbl 1330.46039 · doi:10.1016/j.exmath.2014.07.002
[4] Amiri, H.; Glöckner, H.; Schmeding, A., Lie groupoids of mappings taking values in a Lie groupoid, Arch. Math. (Brno), 56, 307-356 (2020) · Zbl 07285968 · doi:10.5817/AM2020-5-307
[5] Bastiani, A., Applications différentiables et variétés différentiables de dimension infinie, J. Anal. Math., 13, 1-114 (1964) · Zbl 0196.44103 · doi:10.1007/BF02786619
[6] Bertram, W.; Glöckner, H.; Neeb, K-H, Differential calculus over general base fields and rings, Expo. Math., 22, 213-282 (2004) · Zbl 1099.58006 · doi:10.1016/S0723-0869(04)80006-9
[7] Cerf, J., Topologie de certains éspaces de plongements, Bull. Soc. Math. Fr., 89, 227-380 (1961) · Zbl 0101.16001 · doi:10.24033/bsmf.1567
[8] Douady, A.: Variétés à bord anguleux et voisinages tubulaires. In: Séminaire Henri Cartan, Exp. 1 (1961/1962) · Zbl 0116.40304
[9] Eells, J.: On the geometry of function spaces. In: Sympos. internac. Topología algebráica, pp. 303-308 (1958) · Zbl 0092.11302
[10] Glöckner, H.; Strasburger, A., Infinite-dimensional Lie groups without completeness restrictions, Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups, 43-59 (2002), Warsaw: Banach Center Publications, Warsaw · Zbl 1020.58009
[11] Glöckner, H., Lie groups of measurable mappings, Can. J. Math., 55, 969-999 (2003) · Zbl 1053.22013 · doi:10.4153/CJM-2003-039-9
[12] Glöckner, H.: Regularity properties of infinite-dimensional Lie groups and semiregularity. Preprint arXiv:1208.0715
[13] Glöckner, H.: Smoothing operators for vector-valued functions and extension operators. Preprint arXiv:2006.00254
[14] Glöckner, H.: Manifolds of mappings on rough manifolds and manifold structures on box products, in preparation
[15] Glöckner, H., Neeb, K.-H.: Infinite-Dimensional Lie Groups, book in preparation
[16] Hamilton, RS, The inverse function theorem of Nash and Moser, Bull. Am. Math. Soc., 7, 65-222 (1982) · Zbl 0499.58003 · doi:10.1090/S0273-0979-1982-15004-2
[17] Hanusch, M.: A \(C^k\)-Seeley-extension-theorem for Bastiani’s differential calculus. Can. J. Math. doi:10.4153/S0008414X21000596
[18] Ingrisch, S.: Gemischte Differenzierbarkeit von Fixpunkten und impliziten Funktionen. Master’s thesis, University of Paderborn (2019) (advisor: H. Glöckner)
[19] Keller, HH, Differential Calculus in Locally Convex Spaces (1974), Berlin: Springer, Berlin · Zbl 0307.58005 · doi:10.1007/BFb0070564
[20] Kriegl, A.; Michor, PW, The Convenient Setting of Global Analysis (1997), Providence: AMS, Providence · Zbl 0889.58001 · doi:10.1090/surv/053
[21] Michor, PW, Manifolds of Differentiable Mappings (1980), Orpington: Shiva, Orpington · Zbl 0433.58001
[22] Milnor, J.; DeWitt, BS; Stora, R., Remarks on infinite-dimensional Lie groups, Relativité, groupes et topologie II, 1007-1057 (1984), Amsterdam: North-Holland, Amsterdam · Zbl 0594.22009
[23] Neeb, K-H, Towards a Lie theory of locally convex groups, Jpn. J. Math., 1, 291-468 (2006) · Zbl 1161.22012 · doi:10.1007/s11537-006-0606-y
[24] Neeb, K-H; Wagemann, F., Lie group structures on groups of smooth and holomorphic maps on non-compact manifolds, Geom. Dedic., 134, 17-60 (2008) · Zbl 1143.22016 · doi:10.1007/s10711-008-9244-2
[25] Wittmann, J., The Banach manifold \(C^k(M, N)\), Differ. Geom. Appl., 63, 166-185 (2019) · Zbl 1433.58012 · doi:10.1016/j.difgeo.2019.01.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.