×

Stability and convergence analysis of a Crank-Nicolson Galerkin scheme for the fractional Korteweg-de Vries equation. (English) Zbl 07883472

Summary: In this paper we study the convergence of a fully discrete Crank-Nicolson Galerkin scheme for the initial value problem associated with the fractional Korteweg-de Vries (KdV) equation, which involves the fractional Laplacian and non-linear convection terms. Our proof relies on the Kato type local smoothing effect to estimate the localized \(H^{\alpha/2}\)-norm of the approximated solution, where \(\alpha\in[1, 2)\). We demonstrate that the scheme converges strongly in \(L^2(0, T; L^2_{loc}(\mathbb{R}))\) to a weak solution of the fractional KdV equation provided the initial data in \(L^2(\mathbb{R})\). Assuming the initial data is sufficiently regular, we obtain the rate of convergence for the numerical scheme. Finally, the theoretical convergence rates are justified numerically through various numerical illustrations.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35D30 Weak solutions to PDEs
35B35 Stability in context of PDEs
41A25 Rate of convergence, degree of approximation
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Abdelouhab, Laziz; Bona, Jerry L.; Felland, M.; Saut, Jean-Claude, Nonlocal models for nonlinear, dispersive waves, Physica D, 40, 3, 360-392, 1989 · Zbl 0699.35227 · doi:10.1016/0167-2789(89)90050-X
[2] Biccari, Umberto; Warma, Mahamadi; Zuazua, Enrique, Local elliptic regularity for the Dirichlet fractional Laplacian, Adv. Nonlinear Stud., 17, 2, 387-409, 2017 · Zbl 1360.35033 · doi:10.1515/ans-2017-0014
[3] Ciarlet, Philippe G., The Finite Element Method for Elliptic Problems, 2002, Society for Industrial and Applied Mathematics · Zbl 0999.65129 · doi:10.1137/1.9780898719208
[4] Di Nezza, Eleonora; Palatucci, Giampiero; Valdinoci, Enrico, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 5, 521-573, 2012 · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[5] Dutta, Rajib; Holden, Helge; Koley, Ujjwal; Risebro, Nils Henrik, Operator splitting for the Benjamin-Ono equation, J. Differ. Equations, 259, 11, 6694-6717, 2015 · Zbl 1326.35311 · doi:10.1016/j.jde.2015.08.002
[6] Dutta, Rajib; Holden, Helge; Koley, Ujjwal; Risebro, Nils Henrik, Convergence of finite difference schemes for the Benjamin-Ono equation, Numer. Math., 134, 2, 249-274, 2016 · Zbl 1353.65090 · doi:10.1007/s00211-015-0778-6
[7] Dutta, Rajib; Koley, Ujjwal; Risebro, Nils Henrik, Convergence of a higher order scheme for the Korteweg-de Vries equation, SIAM J. Numer. Anal., 53, 4, 1963-1983, 2015 · Zbl 1342.35301 · doi:10.1137/140982532
[8] Dutta, Rajib; Risebro, Nils Henrik, A note on the convergence of a Crank-Nicolson scheme for the KdV equation, Int. J. Numer. Anal. Model., 13, 5, 657-675, 2016 · Zbl 1401.65104
[9] Dutta, Rajib; Sarkar, Tanmay, Operator splitting for the fractional Korteweg-de Vries equation, Numer. Methods Partial Differ. Equations, 37, 6, 3000-3022, 2021 · Zbl 07775888 · doi:10.1002/num.22810
[10] Fonseca, Germán; Linares, Felipe; Ponce, Gustavo, The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 30, 5, 763-790, 2013 · Zbl 1511.35035 · doi:10.1016/j.anihpc.2012.06.006
[11] Galtung, Sondre Tesdal; Klingenberg, Christian; Westdickenberg, Michael, Convergence rates of a fully discrete Galerkin scheme for the Benjamin-Ono equation, XVI International Conference on Hyperbolic Problems: Theory, Numerics, Applications, 236, 589-601, 2016 · Zbl 1405.65119
[12] Galtung, Sondre Tesdal, Convergent Crank-Nicolson Galerkin Scheme for the Benjamin-Ono Equation, 2016 · Zbl 1397.35252
[13] Galtung, Sondre Tesdal, A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation, Discrete Contin. Dyn. Syst., 38, 3, 1243-1268, 2018 · Zbl 1397.35252 · doi:10.3934/dcds.2018051
[14] Ginibre, Jean; Velo, Giorgio, Commutator expansions and smoothing properties of generalized Benjamin-Ono equations, Ann. Inst. Henri Poincaré, Phys. Théor., 51, 2, 221-229, 1989 · Zbl 0705.35126
[15] Ginibre, Jean; Velo, Giorgio, Smoothing properties and existence of solutions for the generalized Benjamin-Ono equation, J. Differ. Equations, 93, 1, 150-212, 1991 · Zbl 0770.35063 · doi:10.1016/0022-0396(91)90025-5
[16] Grubb, Gerd, Fourier methods for fractional-order operators, 2022 · Zbl 1476.35309
[17] Herr, Sebastian; Ionescu, Alexandru D.; Kenig, Carlos E.; Koch, Herbert, A para-differential renormalization technique for nonlinear dispersive equations, Commun. Partial Differ. Equations, 35, 10, 1827-1875, 2010 · Zbl 1214.35089 · doi:10.1080/03605302.2010.487232
[18] Holden, Helge; Karlsen, Kenneth Hvistendahl; Risebro, Nils Henrik, Operator Splitting Methods for Generalized Korteweg-de Vries Equations, J. Comput. Phys., 153, 1, 203-222, 1999 · Zbl 0947.65102 · doi:10.1006/jcph.1999.6273
[19] Holden, Helge; Koley, Ujjwal; Risebro, Nils Henrik, Convergence of a fully discrete finite difference scheme for the Korteweg-de Vries equation, IMA J. Numer. Anal., 35, 3, 1047-1077, 2015 · Zbl 1348.65121 · doi:10.1093/imanum/dru040
[20] Ionescu, Alexandru D.; Kenig, Carlos E., Global well-posedness of the Benjamin-Ono equation in low-regularity spaces, J. Am. Math. Soc., 20, 3, 753-798, 2007 · Zbl 1123.35055 · doi:10.1090/S0894-0347-06-00551-0
[21] Kato, Tosio, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Adv. Math., Suppl. Stud., 8, 93-128, 1983 · Zbl 0549.34001
[22] Kenig, Carlos E.; Ponce, Gustavo; Vega, Luis, Well-Posedness of the Initial Value Problem for the Korteweg-de Vries Equation, J. Am. Math. Soc., 4, 2, 323-347, 1991 · Zbl 0737.35102 · doi:10.1090/S0894-0347-1991-1086966-0
[23] Killip, Rowan; Vişan, Monica, KdV is wellposed in \({H}^{-1}\), Ann. Math., 190, 1, 249-305, 2019 · Zbl 1426.35203
[24] Klein, Christian; Saut, Jean-Claude, A numerical approach to blow-up issues for dispersive perturbations of Burgers’ equation, Phys. D: Nonlinear Phenom., 295, 46-65, 2015 · Zbl 1364.35047 · doi:10.1016/j.physd.2014.12.004
[25] Koley, Ujjwal; Ray, Deep; Sarkar, Tanmay, Multilevel Monte Carlo finite difference methods for fractional conservation laws with random data, SIAM/ASA J. Uncertain. Quantif., 9, 1, 65-105, 2021 · Zbl 1471.65104 · doi:10.1137/19M1279447
[26] Korteweg, D. J.; De Vries, Gustav, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. (5), 39, 240, 422-443, 1895 · JFM 26.0881.02 · doi:10.1080/14786449508620739
[27] Kwaśnicki, Mateusz, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20, 1, 7-51, 2017 · Zbl 1375.47038 · doi:10.1515/fca-2017-0002
[28] Linares, Felipe; Pilod, Didier; Saut, Jean-Claude, Dispersive perturbations of Burgers and hyperbolic equations I: Local theory, SIAM J. Math. Anal., 46, 2, 1505-1537, 2014 · Zbl 1294.35124 · doi:10.1137/130912001
[29] Linares, Felipe; Ponce, Gustavo, Introduction to Nonlinear Dispersive Equations, 2014, Springer
[30] Molinet, Luc; Pilod, Didier, The Cauchy problem for the Benjamin-Ono equation in \({L}^2\) revisited, Anal. PDE, 5, 2, 365-395, 2012 · Zbl 1273.35096 · doi:10.2140/apde.2012.5.365
[31] Molinet, Luc; Pilod, Didier; Vento, Stéphane, On well-posedness for some dispersive perturbations of Burgers’ equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 35, 7, 1719-1756, 2018 · Zbl 1459.76024
[32] Podlubny, Igor, Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, 198, 1999, Academic Press Inc. · Zbl 0924.34008
[33] Quarteroni, Alfio; Valli, Alberto, Numerical approximation of partial differential equations, 23, 2008, Springer · Zbl 1151.65339
[34] Sjöberg, Anders, On the Korteweg-de Vries equation: existence and uniqueness, J. Math. Anal. Appl., 29, 3, 569-579, 1970 · Zbl 0179.43101 · doi:10.1016/0022-247X(70)90068-5
[35] Steinbach, Olaf, On the stability of the \(L^2\) projection in fractional Sobolev spaces, Numer. Math., 88, 2, 367-379, 2001 · Zbl 0989.65124 · doi:10.1007/PL00005449
[36] Tao, Terence, Global well-posedness of the Benjamin-Ono equation in \({H}^1(\mathbb{R})\), J. Hyperbolic Differ. Equ., 1, 1, 27-49, 2004 · Zbl 1055.35104
[37] Thomée, Vidar; Vasudeva Murthy, A. S., A numerical method for the Benjamin-Ono equation, BIT, 38, 597-611, 1998 · Zbl 0916.65139 · doi:10.1007/BF02510262
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.