×

Pion spectroscopy and dynamics using the holographic light-front Schrödinger equation and the ’t Hooft equation. (English) Zbl 1518.83067

Summary: We show that the holographic Schrödinger equation of light-front chiral QCD, together with the ’t Hooft equation of \((1+1)\)-dimensional QCD in the large \(N_c\) limit, can simultaneously describe pion spectroscopy as well as the pion decay constant, charge radius, electromagnetic form factor, photon-to-pion transition form factor, Parton Distribution Function (PDF) and Distribution Amplitude (DA). Furthermore, the chiral-limit constraints, as encoded in the Gell-Mann-Oakes-Renner (GMOR) relation, are satisfied.

MSC:

83E05 Geometrodynamics and the holographic principle
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81V05 Strong interaction, including quantum chromodynamics
81V35 Nuclear physics
81V15 Weak interaction in quantum theory
81R40 Symmetry breaking in quantum theory
81U90 Particle decays
81V80 Quantum optics
81V25 Other elementary particle theory in quantum theory

Software:

HOPPET

References:

[1] Eichmann, G.; Sanchis-Alepuz, H.; Williams, R.; Alkofer, R.; Fischer, C. S., Baryons as relativistic three-quark bound states, Prog. Part. Nucl. Phys., 91, 1-100 (2016)
[2] Roberts, C. D.; Richards, D. G.; Horn, T.; Chang, L., Insights into the emergence of mass from studies of pion and kaon structure, Prog. Part. Nucl. Phys., 120, Article 103883 pp. (2021)
[3] Binosi, D., Emergent hadron mass in strong dynamics, Few-Body Syst., 63, 2, 42 (2022)
[4] Papavassiliou, J., Emergence of mass in the gauge sector of QCD, Chin. Phys. C, 46, 11, Article 112001 pp. (2022)
[5] Gell-Mann, M.; Oakes, R. J.; Renner, B., Behavior of current divergences under su(3) × su(3), Phys. Rev., 175, 2195-2199 (1968)
[6] Brodsky, S. J.; Roberts, C. D.; Shrock, R.; Tandy, P. C., Confinement contains condensates, Phys. Rev. C, 85, Article 065202 pp. (2012)
[7] Li, B. L.; Chang, L.; Gao, F.; Roberts, C. D.; Schmidt, S. M.; Zong, H. S., Distribution amplitudes of radially-excited π and K mesons, Phys. Rev. D, 93, 11, Article 114033 pp. (2016)
[8] Brodsky, S. J.; de Téramond, G. F.; Dosch, H. G.; Erlich, J., Light-front holographic QCD and emerging confinement, Phys. Rep., 584, 1-105 (2015) · Zbl 1357.81157
[9] Brodsky, S. J.; Pauli, H.-C.; Pinsky, S. S., Quantum chromodynamics and other field theories on the light cone, Phys. Rep., 301, 299-486 (1998)
[10] Eisert, J.; Cramer, M.; Plenio, M. B., Area laws for the entanglement entropy - a review, Rev. Mod. Phys., 82, 277-306 (2010) · Zbl 1205.81035
[11] Li, Y.; Maris, P.; Vary, J. P., Quarkonium as a relativistic bound state on the light front, Phys. Rev. D, 96, 1, Article 016022 pp. (2017)
[12] Raya, K.; Cui, Z.-F.; Chang, L.; Morgado, J.-M.; Roberts, C. D.; Rodriguez-Quintero, J., Revealing pion and kaon structure via generalised parton distributions *, Chin. Phys. C, 46, 1, Article 013105 pp. (2022) · Zbl 1509.81617
[13] Brodsky, S. J.; de Téramond, G. F., Hadronic spectra and light-front wavefunctions in holographic QCD, Phys. Rev. Lett., 96, Article 201601 pp. (2006)
[14] de Téramond, G. F.; Brodsky, S. J., Hadronic spectrum of a holographic dual of QCD, Phys. Rev. Lett., 94, Article 201601 pp. (2005)
[15] de Téramond, G. F.; Brodsky, S. J., Light-front holography: a first approximation to QCD, Phys. Rev. Lett., 102, Article 081601 pp. (2009)
[16] Brodsky, S. J.; De Téramond, G. F.; Dosch, H. G., Threefold complementary approach to holographic QCD, Phys. Lett. B, 729, 3-8 (2014) · Zbl 1331.81297
[17] Brodsky, S. J.; de Téramond, G. F., Light-front dynamics and AdS/QCD correspondence: the pion form factor in the space- and time-like regions, Phys. Rev. D, 77, Article 056007 pp. (2008)
[18] Brodsky, S. J.; de Téramond, G. F., Light-front dynamics and AdS/QCD correspondence: gravitational form factors of composite hadrons, Phys. Rev. D, 78, Article 025032 pp. (2008)
[19] Brodsky, S. J.; de Téramond, G. F., AdS/CFT and light-front QCD, Subnucl. Ser., 45, 139-183 (2009)
[20] Li, Y.; Vary, J. P., Light-front holography with chiral symmetry breaking, Phys. Lett. B, 825, Article 136860 pp. (2022) · Zbl 1484.81062
[21] Ballon-Bayona, A.; Krein, G.a.; Miller, C., Decay constants of the pion and its excitations in holographic QCD, Phys. Rev. D, 91, Article 065024 pp. (2015)
[22] Ahmady, M.; Chishtie, F.; Sandapen, R., Spin effects in the pion holographic light-front wavefunction, Phys. Rev. D, 95, 7, Article 074008 pp. (2017)
[23] Ahmady, M.; Mondal, C.; Sandapen, R., Dynamical spin effects in the holographic light-front wavefunctions of light pseudoscalar mesons, Phys. Rev. D, 98, 3, Article 034010 pp. (2018)
[24] Ahmady, M.; Dahiya, H.; Kaur, S.; Mondal, C.; Sandapen, R.; Sharma, N., Extending light-front holographic QCD using the ’t Hooft equation, Phys. Lett. B, 823, Article 136754 pp. (2021) · Zbl 1483.81175
[25] de Téramond, G. F.; Brodsky, S. J., Longitudinal dynamics and chiral symmetry breaking in holographic light-front QCD, Phys. Rev. D, 104, 11, Article 116009 pp. (2021)
[26] Lyubovitskij, V. E.; Schmidt, I., Meson masses and decay constants in holographic QCD consistent with ChPT and HQET, Phys. Rev. D, 105, 7, Article 074009 pp. (2022)
[27] Weller, C. M.; Miller, G. A., Confinement in two-dimensional QCD and the infinitely long pion, Phys. Rev. D, 105, 3, Article 036009 pp. (2022)
[28] Rinaldi, M.; Ceccopieri, F. A.; Vento, V., The pion in the graviton soft-wall model: phenomenological applications, Eur. Phys. J. C, 82, 7, 626 (2022)
[29] ’t Hooft, G., A two-dimensional model for mesons, Nucl. Phys. B, 75, 461-470 (1974)
[30] Chabysheva, S. S.; Hiller, J. R., Dynamical model for longitudinal wave functions in light-front holographic QCD, Ann. Phys., 337, 143-152 (2013)
[31] Ahmady, M.; Kaur, S.; MacKay, S. L.; Mondal, C.; Sandapen, R., Hadron spectroscopy using the light-front holographic Schrödinger equation and the ’t Hooft equation, Phys. Rev. D, 104, 7, Article 074013 pp. (2021)
[32] Drell, S. D.; Yan, T.-M., Connection of elastic electromagnetic nucleon form-factors at large \(Q^2\) and deep inelastic structure functions near threshold, Phys. Rev. Lett., 24, 181-185 (1970)
[33] West, G. B., Phenomenological model for the electromagnetic structure of the proton, Phys. Rev. Lett., 24, 1206-1209 (1970)
[34] Amendolia, S. R., A measurement of the space - like pion electromagnetic form-factor, Nucl. Phys. B, 277, 168 (1986)
[35] Bebek, C. J., Further measurements of forward-charged-pion electroproduction at large \(\kappa^2\), Phys. Rev. D, 9, 1229-1242 (1974)
[36] Bebek, C. J., Electroproduction of single pions at low epsilon and a measurement of the pion form-factor up to \(q^2 = 10\)-GeV^2, Phys. Rev. D, 17, 1693 (1978)
[37] Volmer, J., Measurement of the charged pion electromagnetic form-factor, Phys. Rev. Lett., 86, 1713-1716 (2001)
[38] Pedlar, T. K., Precision measurements of the timelike electromagnetic form-factors of pion, kaon, and proton, Phys. Rev. Lett., 95, Article 261803 pp. (2005)
[39] Seth, K. K.; Dobbs, S.; Metreveli, Z.; Tomaradze, A.; Xiao, T.; Bonvicini, G., Electromagnetic structure of the proton, pion, and kaon by high-precision form factor measurements at large timelike momentum transfers, Phys. Rev. Lett., 110, 2, Article 022002 pp. (2013)
[40] Zyla, P. A., Review of particle physics, Prog. Theor. Exp. Phys., 2020, 8, Article 083C01 pp. (2020)
[41] Dokshitzer, Y. L., Calculation of the structure functions for deep inelastic scattering and \(e^+ e^-\) annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP, 46, 641-653 (1977)
[42] Gribov, V. N.; Lipatov, L. N., Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys., 15, 438-450 (1972)
[43] Altarelli, G.; Parisi, G., Asymptotic freedom in parton language, Nucl. Phys. B, 126, 298-318 (1977)
[44] Salam, G. P.; Rojo, J., A higher order perturbative parton evolution toolkit (HOPPET), Comput. Phys. Commun., 180, 120-156 (2009)
[45] Barry, P. C.; Sato, N.; Melnitchouk, W.; Ji, C.-R., First Monte Carlo global QCD analysis of pion parton distributions, Phys. Rev. Lett., 121, 15, Article 152001 pp. (2018)
[46] Conway, J. S., Experimental study of muon pairs produced by 252-GeV pions on tungsten, Phys. Rev. D, 39, 92-122 (1989)
[47] Chen, C.; Chang, L.; Roberts, C. D.; Wan, S.; Zong, H.-S., Valence-quark distribution functions in the kaon and pion, Phys. Rev. D, 93, 7, Article 074021 pp. (2016)
[48] Aicher, M.; Schafer, A.; Vogelsang, W., Soft-gluon resummation and the valence parton distribution function of the pion, Phys. Rev. Lett., 105, Article 252003 pp. (2010)
[49] Hecht, M. B.; Roberts, C. D.; Schmidt, S. M., Valence quark distributions in the pion, Phys. Rev. C, 63, Article 025213 pp. (2001)
[50] Barry, P. C.; Ji, C.-R.; Sato, N.; Melnitchouk, W., Global QCD analysis of pion parton distributions with threshold resummation, Phys. Rev. Lett., 127, 23, Article 232001 pp. (2021)
[51] Lan, J.; Fu, K.; Mondal, C.; Zhao, X.; Vary, j. P., Light mesons with one dynamical gluon on the light front, Phys. Lett. B, 825, Article 136890 pp. (2022)
[52] Sufian, R. S.; Karpie, J.; Egerer, C.; Orginos, K.; Qiu, J.-W.; Richards, D. G., Pion valence quark distribution from matrix element calculated in lattice QCD, Phys. Rev. D, 99, 7, Article 074507 pp. (2019)
[53] Ding, M.; Raya, K.; Binosi, D.; Chang, L.; Roberts, C. D.; Schmidt, S. M., Symmetry, symmetry breaking, and pion parton distributions, Phys. Rev. D, 101, 5, Article 054014 pp. (2020)
[54] Cui, Z. F.; Ding, M.; Morgado, J. M.; Raya, K.; Binosi, D.; Chang, L.; De Soto, F.; Roberts, C. D.; Rodríguez-Quintero, J.; Schmidt, S. M., Emergence of pion parton distributions, Phys. Rev. D, 105, 9, Article L091502 pp. (2022)
[55] Lepage, G. P.; Brodsky, S. J., Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D, 22, 2157-2198 (1980)
[56] Radyushkin, A. V., Deep elastic processes of composite particles in field theory and asymptotic freedom
[57] Aitala, E. M., Direct measurement of the pion valence quark momentum distribution, the pion light cone wave function squared, Phys. Rev. Lett., 86, 4768-4772 (2001)
[58] Mondal, C.; Nair, S.; Jia, S.; Zhao, X.; Vary, J. P., Pion to photon transition form factors with basis light-front quantization, Phys. Rev. D, 104, 9, Article 094034 pp. (2021)
[59] Braaten, E., QCD corrections to meson-photon transition form-factors, Phys. Rev. D, 28, 524 (1983)
[60] Aubert, B., Measurement of the \(\gamma \gamma^\ast \to \pi^0\) transition form factor, Phys. Rev. D, 80, Article 052002 pp. (2009)
[61] Gronberg, J., Measurements of the meson - photon transition form-factors of light pseudoscalar mesons at large momentum transfer, Phys. Rev. D, 57, 33-54 (1998)
[62] Behrend, H. J., A measurement of the \(\pi^0\), η and \(\eta^\prime\) electromagnetic form-factors, Z. Phys. C, 49, 401-410 (1991)
[63] Uehara, S., Measurement of \(\gamma \gamma^\ast \to \pi^0\) transition form factor at Belle, Phys. Rev. D, 86, Article 092007 pp. (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.