×

Effects of flexible bed on oblique wave interaction with multiple surface-piercing porous barriers. (English) Zbl 1464.76014

Summary: Within the framework of linearised theory of water waves, a model of oblique wave scattering by obstacles in the form of thin multiple surface-piercing porous barriers having non-uniform porosity is analysed. Herein, we consider a flexible base in an ocean of uniform finite depth. The flexible base surface is modelled as a thin elastic plate under the acceptance of Euler-Bernoulli beam equation. With the aid of eigenfunction expansion method along with mode-coupling relations, four Fredholm-type integral equations are obtained from the boundary value problem. The multi-term Galerkin approximations in terms of Chebychev polynomials multiplied by suitable weight functions are used for solving those integral equations. Analytic solutions for different hydrodynamic quantities (viz. reflection coefficients, transmission coefficients, dissipated wave energy and non-dimensional wave force) are determined, and those quantities are displayed graphically for various values of the dimensionless parameters. It is observed from the graphical representations that the permeability of the barriers and thickness of the bottom surface play a crucial role in modelling of efficient breakwaters.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76S05 Flows in porous media; filtration; seepage
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
86A05 Hydrology, hydrography, oceanography
Full Text: DOI

References:

[1] Sollitt, CK; Cross, RH, Wave transmission through permeable breakwaters, Coast. Eng. Proc., 1, 1827-1846 (1972)
[2] Huang, LH; Chao, HI, Reflection and transmission of water wave by porous breakwater, J. Waterw. Ports. Coast. Eng., 118, 5, 437-452 (1992) · doi:10.1061/(ASCE)0733-950X(1992)118:5(437)
[3] Chwang, AT, A porous wavemaker theory, J. Fluid Mech., 132, 395-406 (1983) · Zbl 0534.76023 · doi:10.1017/S0022112083001676
[4] Yu, X.; Chwang, AT, Wave motion through porous structures, ASCE J. Eng. Mech., 120, 989-1008 (1994) · doi:10.1061/(ASCE)0733-9399(1994)120:5(989)
[5] Lee, MM; Chwang, AT, Scattering and radiation of water waves by permeable barriers, Phys. Fluid, 1, 54-65 (2000) · Zbl 1149.76451 · doi:10.1063/1.870284
[6] Li, AJ; Liu, Y.; Li, HJ, Accurate solutions to water wave scattering by vertical thin porous barriers, Math. Probl. Eng., 2015, 3, 1-11 (2015) · Zbl 1394.76028
[7] Tao, L.; Song, H.; Chakrabarti, S., Wave interaction with a perforated circular breakwater of non-uniform porosity, J. Eng. Math., 65, 257-271 (2009) · Zbl 1180.76013 · doi:10.1007/s10665-009-9287-x
[8] Song, H.; Tao, L., An efficient scaled boundary FEM model for wave interaction with a nonuniform porous cylinder, Int. J. Numer. Methods Fluids, 63, 96-118 (2010) · Zbl 1425.76150
[9] Gupta, S.; Gayen, R., Scattering of oblique water waves by two thin unequal barriers with non-uniform permeability, J. Eng. Math., 112, 37-61 (2018) · Zbl 1421.76032 · doi:10.1007/s10665-018-9964-8
[10] Gupta, S.; Gayen, R., Water wave interaction with dual asymmetric non-uniform permeable plates using integral equations, Appl. Math. Comput., 346, 436-451 (2019) · Zbl 1428.76037
[11] Sarkar, B.; De, S.; Roy, R., Oblique wave scattering by two thin non-uniform permeable vertical walls with unequal apertures in water of uniform finite depth, Waves Random Complex Media (2020) · Zbl 1493.76018 · doi:10.1080/17455030.2020.1716106
[12] Chakraborty, R.; Mondal, A.; Gayen, R., Interaction of surface water waves with a vertical elastic plate: a hypersingular integral equation approach, Z. Angew. Math. Phys., 67, 5, 115 (2016) · Zbl 1358.76016 · doi:10.1007/s00033-016-0709-0
[13] Lee, D-S, Scattering of an incident acoustic wave by an elastic sphere in a shallow water, Z. Angew. Math. Phys., 59, 6, 1069-1080 (2008) · Zbl 1247.76075 · doi:10.1007/s00033-007-7070-2
[14] Chiba, M.; Watanabe, H.; Bauer, HF, Hydroelastic coupled vibrations in a cylindrical container with a membrane bottom containing liquid with surface tension, J. Sound Vib., 251, 4, 717-740 (2002) · doi:10.1006/jsvi.2001.3986
[15] Saha, S.; Bora, SN, Elastic bottom effect on trapped waves in a two-layer fluid, Int. J. Appl. Mech., 7, 1550028 (2015) · doi:10.1142/S1758825115500283
[16] Chanda, A.; Bora, SN, Scattering of linear oblique water waves by an elastic bottom undulation in a two-layer fluid, Z. Angew. Math. Phys., 71, 4, 107 (2020) · Zbl 1443.76108 · doi:10.1007/s00033-020-01331-7
[17] Mohapatra, S.; Bora, SN, Oblique wave scattering by an impermeable ocean-bed of variable depth in a two-layer fluid with ice-cover, Z. Angew. Math. Phys., 63, 879-903 (2012) · Zbl 1264.76025 · doi:10.1007/s00033-012-0210-3
[18] Sarangi, MR; Mohapatra, S., Investigation on the effects of versatile deformating bed on a water wave diffraction problem, Ocean Eng., 164, 377-387 (2018) · doi:10.1016/j.oceaneng.2018.06.039
[19] Sarangi, MR; Mohapatra, S., Hydro-elastic wave proliferation over an impermeable seabed with bottom deformation, Geophys. Astrophys. Fluid Dyn., 113, 303-325 (2019) · Zbl 1499.76026 · doi:10.1080/03091929.2019.1584296
[20] Mohapatra, S., Effects of elastic bed on hydrodynamic forces for a submerged sphere in an ocean of finite depth, Z. Angew. Math. Phys., 68, 91 (2017) · Zbl 1386.76038 · doi:10.1007/s00033-017-0837-1
[21] Das, L.; Mohapatra, S., Effects of flexible bottom on radiation of water waves by a sphere submerged beneath an ice-cover, Meccanica, 54, 985-999 (2019) · doi:10.1007/s11012-019-00998-1
[22] Khuntia, S.; Mohapatra, S., Effects of ice-floe on surface wave interaction with an irregular flexible seabed, Eur. J. Mech. B. Fluid, 84, 357-366 (2020) · Zbl 1478.76012 · doi:10.1016/j.euromechflu.2020.07.002
[23] Das, L.; Mohapatra, S., Analytical study of exciting forces acting on a rigid sphere in a fluid with flexible base surface, Z. Angew. Math. Mech. (2020) · Zbl 07812904 · doi:10.1002/zamm.202000052
[24] Karmakar, D.; Soares, CG, Wave transmission due to multiple bottom-standing porous barriers, Ocean Eng., 80, 50-63 (2014) · doi:10.1016/j.oceaneng.2014.01.012
[25] Karmakar, D.; Bhattacharjee, J.; Soares, C., Scattering of gravity waves by multiple surface-piercing floating membrane, Appl. Ocean Res., 39, 40-52 (2013) · doi:10.1016/j.apor.2012.10.001
[26] Mandal, BN; Chakrabarti, A., Water Wave Scattering by Barriers (2000), Southampton: WIT Press, Southampton · Zbl 0961.76003
[27] Evans, DV; Porter, R., Complementary methods for scattering by thin barriers, Int. Ser. Adv. Fluid Mech., 8, 1-44 (1997) · Zbl 0918.76008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.