×

Dynamic event-triggered fault detection for multi time scale systems: application to grid connected converters. (English) Zbl 1539.93119

Summary: This paper deals with the fault detection problem for multi time scale systems. To save network resources, a novel dynamic event-triggered protocol with more generality and higher flexibility of parameters is proposed. The main novelties are condensed as follows, firstly, a modified fault detection observer and a quadratic residual evaluation function are synthetically designed; secondly, the sufficient condition is proved to guarantee that the estimation error system is asymptotically stable and satisfies the specified \(H_\infty\) performance index; finally, a Lyapunov function is designed to composite the multi time scale perturbation parameter and the influence of the dynamic event-triggered scheme. Finally, a practical experiment on a type of grid connected converters is given to verify the proposed approach.

MSC:

93C65 Discrete event control/observation systems
93C70 Time-scale analysis and singular perturbations in control/observation systems
93D30 Lyapunov and storage functions
Full Text: DOI

References:

[1] Son, Y. I.; Kim, I. H.; Choi, D. S., Robust cascade control of electric motor drives using dual reduced-order PI observer, IEEE Trans. Ind. Electron., 62, 6, 3672-3682, 2015
[2] Wang, Y. Y.; Gao, Y. B.; Karimi, H. R.; Shen, H.; Fang, Z. J., Sliding mode control of fuzzy singularly perturbed systems with application to electric circuit, IEEE Trans. Syst. Man Cybern., 8, 99, 1-9, 2017
[3] Hu, S.; Yuan, P.; Yue, D.; Dou, C.; Cheng, Z.; Zhang, Y., Attack-resilient event-triggered controller design of DC microgrids under DoS attacks, IEEE Trans. Circuits Syst. I. Regul. Pap., 67, 2, 699-710, 2020 · Zbl 1469.94243
[4] Ma, L.; Liu, H. Y.; Zhou, L. N.; Yang, C. Y.; Dai, W.; Wang, G. Q., Security control for multi-time-scale CPSs under DoS attacks: an improved dynamic event-triggered mechanism, IEEE Trans. Netw. Sci. Eng., 9, 3, 1813-1826, 2022
[5] Yi, J. Z.; Xu, Y.; Gu, W.; Wu, W., A multi-time-scale economic scheduling strategy for virtual power plant based on deferrable loads aggregation and disaggregation, IEEE Trans. Sustain. Energy, 11, 3, 1332-1346, 2020
[6] Kan, X. Y.; Lee, C. H.; Othmer, H. G., A multi-time-scale analysis of chemical reaction networks: II. Stochastic systems, J. Math. Biol., 73, 5, 1081-1129, 2016 · Zbl 1353.92049
[7] Song, M.; Sun, W.; Shahidehpour, M.; Yan, M.; Gao, C., Multi-time scale coordinated control and scheduling of inverter-based TCLs with variable wind generation, IEEE Trans. Sustain. Energy, 12, 1, 46-57, 2021
[8] Bao, Z.; Zhou, Q.; Yang, Z.; Yang, Q.; Xu, L.; Wu, T., A multi time-scale and multi energy-type coordinated microgrid scheduling solution-part I: model and methodology, IEEE Trans. Power Syst., 30, 5, 2257-2266, 2015
[9] Bao, Z.; Zhou, Q.; Yang, Z.; Yang, Q.; Xu, L.; Wu, T., A multi time-scale and multi energy-type coordinated microgrid scheduling solution-part II: optimization algorithm and case studies, IEEE Trans. Power Syst., 30, 5, 2267-2277, 2015
[10] Mayhorn, E.; Xie, L.; Butler-Purry, K., Multi-time scale coordination of distributed energy resources in isolated power systems, IEEE Trans. Control Smart Grid, 8, 2, 998-1005, 2017
[11] Zhao, J. Z.; Yang, P.; Guerrero, J. M.; Xu, Z.; Green, T. C., Multipletime- scales hierarchical frequency stability control strategy of mediumvoltage isolated microgrid, IEEE Trans. Power Electron., 31, 8, 5974-5991, 2016
[12] Falahi, M.; Lotfifard, S.; Ehsani, M.; Butler-Purry, K., Dynamic model predictive-based energy management of DG integrated distribution systems, IEEE Trans. Power Electron., 28, 4, 2217-2227, 2013
[13] Olivares, D. E., Trends in microgrid control, IEEE Trans. Control Smart Grid, 5, 4, 1905-1919, 2014
[14] Jiang, N.; Chiang, H. D., A two-time scale dynamic correction method for fifth-order generator model undergoing large disturbances, IEEE Trans. Power Syst., 31, 5, 3616-3623, 2016
[15] Yoo, H.; Gajic, Z., New designs of linear observers and observerbased controllers for singularly perturbed linear systems, IEEE Trans. Automat. Control, 63, 11, 3904-3911, 2018 · Zbl 1423.93266
[16] Jardn-Kojakhmetov, H.; Scherpen, J. M.; del Puerto-Flores, D., Stabilization of a class of slow-fast control systems at non-hyperbolic points, Automatica, 99, 13-21, 2019 · Zbl 1406.93280
[17] Xu, J.; Niu, Y.; Fridman, E.; Fridman, L., Finite frequency H-control of singularly perturbed euler-lagrange systems: An artificial delay approach, Internat. J. Robust Nonlinear Control, 29, 2, 353-374, 2019 · Zbl 1411.93162
[18] Song, J.; Niu, Y., Dynamic event-triggered sliding mode control: Dealing with slow sampling singularly perturbed systems, IEEE Trans. Circuits Syst. II, Exp. Briefs, 67, 6, 1079-1083, 2020
[19] Ding, A.; Qin, Y.; Wang, B.; Jia, L.; Cheng, X., Lightweight multiscale convolutional networks with adaptive pruning for intelligent fault diagnosis of train bogie bearings in edge computing scenarios, IEEE Trans. Instrum. Meas., 72, 1-13, 2023
[20] Fu, Z. J.; Xie, W. F.; Na, J., Robust adaptive nonlinear observer design via multi-time scales neural network, Neurocomputing, 190, 217-225, 2016
[21] Gao, X. R.; Yang, F.; Feng, E. B., A process fault diagnosis method using multi-time scale dynamic feature extraction based on convolutional neural network, Can. J. Chem. Eng., 98, 6, 1280-1292, 2020
[22] Adel, T.; Nouceyba, A.; Amina, C.; Naceur, A. M., Adaptive fault tolerant control of multi-time-scale singularly perturbed systems, Int. J. Automat. Comput., 15, 6, 736-746, 2018
[23] Zainan, L.; Jiandon, D.; Wenchao, L.; Wei, Y., A fast pilot protection for DC distribution networks considering the whole fault process, IEEE Trans. Power Deliv., 37, 4, 3121-3132, 2021
[24] Li, Q., Event-triggered h state estimation for state-saturated complex networks subject to quantization effects and distributed delays, J. Franklin Inst. B, 355, 2874-2891, 2018 · Zbl 1393.93122
[25] Su, X.; Xia, F.; Wu, L.; Chen, C. L.P., Event-triggered fault detector and controller coordinated design of fuzzy systems, IEEE Trans. Fuzzy Syst., 26, 4, 2004-2016, 2018
[26] Zhang, X.; Han, Q. L.; Zhang, B., An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems, IEEE Trans. Ind. Inform., 13, 1, 4-16, 2017
[27] Zhang, X.; Han, Q. L., Event-based H filtering for sampled-data systems, Automatica, 51, 55-69, 2015 · Zbl 1309.93096
[28] Zou, L.; Wang, Z.; Zhou, D., Event-based control and filtering of networked systems: a survey, Automatica, 14, 3, 239-253, 2017
[29] Zhao, H.; Shan, J.; Peng, L.; Yu, H., Distributed event-triggered bipartite consensus for multiagent systems against injection attacks, IEEE Trans. Ind. Inform., 19, 4, 5377-5386, 2023
[30] Hajshirmohamadi, S.; Davoodi, M.; Meskin, N., Event-triggered fault detection and isolation for discrete time linear systems, IET Control Theory Appl., 10, 5, 526-533, 2016
[31] Hajshirmohamadi, S.; Sheikholeslam, F.; Davoodi, M., Event-triggered simultaneous fault detection and tracking control for multi-agent systems, Internat. J. Control, 92, 8, 1928-1944, 2019 · Zbl 1421.93085
[32] J.M.C. Geldenhuys, H. du Toit Mouton, A. Rix, T. Geyer, Model predictive current control of a grid connected converter with LCL-filter, in: 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics, COMPEL, Trondheim, Norway, 2016, pp. 1-6.
[33] Q. Peng, Y. Yang, F. Blaabjerg, State-space modeling of grid-connected power converters considering power-internal voltage characteristics, in: 2019 10th International Conference on Power Electronics and ECCE Asia, ICPE 2019 -ECCE Asia, Busan, Korea, 2019, pp. 3047-3053.
[34] H. Gholami-Khesht, P. Davari, M. Novak, F. Blaabjerg, Robust \(H_\infty\) current control of three-phase grid-connected voltage source converters using linear matrix inequalities, in: 2021 IEEE 22nd Workshop on Control and Modelling of Power Electronics, COMPEL, Cartagena, Colombia, 2021, pp. 1-6.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.