×

A machine learning-based price state prediction model for agricultural commodities using external factors. (English) Zbl 1477.91025

Summary: In recent times of noticeable climate change the consideration of external factors, such as weather and economic key figures, becomes even more crucial for a proper valuation of derivatives written on agricultural commodities. The occurrence of remarkable price changes as a result of severe changes in these factors motivates the introduction of different price states, each describing different dynamics of the price process. In order to include external factors we propose a two-step hybrid model based on machine learning methods for clustering and classification. First, we assign price states to historical prices using K-means clustering. These price states are also assigned to the corresponding data of external factors. Second, predictions of future price states are then obtained from short-term predictions of the external factors by means of either K-nearest neighbors or random forest classification. We apply our model to real corn futures data and generate price scenarios via a Monte Carlo simulation, which we compare to [C. Sørensen, “Modeling seasonality in agricultural commodity futures”, J. Futures Markets 22, No. 5, 393–426 (2002; doi:10.1002/fut.10017)]. Thereby we obtain a better approximation of the real futures prices by the simulated futures prices regarding the error measures MAE, RMSE and MAPE. From a practical point of view, these simulations can be used to support the assessment of price risks in risk management systems or as decision support regarding trading strategies under different price states.

MSC:

91B24 Microeconomic theory (price theory and economic markets)
91B70 Stochastic models in economics
68T07 Artificial neural networks and deep learning

References:

[1] Benth, FE; Meyer-Brandis, T., The information premium for non-storable commodities, J. Energy Mark., 2, 3, 111-140 (2009) · doi:10.21314/JEM.2009.021
[2] Benth, JS; Koekebakker, S., Stochastic Modeling of Electricity and Related Markets. Advanced Series on Statistical Science and Applied Probability (2008), Singapore: World Scientific, Singapore · Zbl 1143.91002
[3] Boudoukh, J.; Richardson, M.; Shen, YJ; Whitelaw, RF, Do asset prices reflect fundamentals? Freshly squeezed evidence from the OJ market, J. Financ. Econ., 83, 2, 397-412 (2007) · doi:10.1016/j.jfineco.2004.06.017
[4] Breiman, L., Random forests, Mach. Learn., 45, 1, 5-32 (2001) · Zbl 1007.68152 · doi:10.1023/A:1010933404324
[5] Brennan, MJ, The supply of storage, Am. Econ. Rev., 48, 1, 50-72 (1958)
[6] Broll, U.; Eckwert, B., The competitive firm under price uncertainty: the role of information and hedging, Decis. Econ. Finance, 31, 1, 1-11 (2008) · Zbl 1142.91453 · doi:10.1007/s10203-007-0074-8
[7] Chatrath, A.; Christie-David, R.; Dhanda, KK; Koch, TW, Index futures leadership, basis behavior, and trader selectivity, J. Futures Mark. Futures Options Other Deriv. Prod., 22, 7, 649-677 (2002)
[8] Che, J.; Wang, J., Short-term electricity prices forecasting based on support vector regression and auto-regressive integrated moving average modeling, Energy Convers. Manag., 51, 10, 1911-1917 (2010) · doi:10.1016/j.enconman.2010.02.023
[9] Fama, EF; French, KR, Commodity futures prices: some evidence on forecast power, premiums, and the theory of storage, J. Bus., 60, 1, 55-73 (1987) · doi:10.1086/296385
[10] Fan, S.; Mao, C.; Chen, L., Next-day electricity-price forecasting using a hybrid network, IET Gener. Transm. Distrib., 1, 1, 176-182 (2007) · doi:10.1049/iet-gtd:20060006
[11] Garcia, P.; Irwin, SH; Leuthold, RM; Yang, L., The value of public information in commodity futures markets, J. Econ. Behav. Org., 32, 4, 559-570 (1997) · doi:10.1016/S0167-2681(97)00013-9
[12] Geman, H.; Nguyen, VN, Soybean inventory and forward curve dynamics, Manag. Sci., 51, 7, 1076-1091 (2005) · doi:10.1287/mnsc.1050.0361
[13] González, AM; Roque, AS; García-González, J., Modeling and forecasting electricity prices with input/output hidden Markov models, IEEE Trans. Power Syst., 20, 1, 13-24 (2005) · doi:10.1109/TPWRS.2004.831265
[14] Gron, A.: Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 1st edn. O’Reilly Media Inc., Newton (2017)
[15] Harvey, AC, Forecasting, Structural Time Series Models and the Kalman Filter (1990), Cambridge: Cambridge University Press, Cambridge · Zbl 0725.62083 · doi:10.1017/CBO9781107049994
[16] Hastie, T.; Tibshirani, R.; Friedman, J., The Elements of Statistical Learning. Springer Series in Statistics (2001), New York: Springer New York Inc., New York · Zbl 0973.62007
[17] Haug, E.G.: Asian options with zero cost-of-carry: eex options on freight and iron ore futures. Decis. Econ. Finance 44(1), 191-195 (2021) · Zbl 1467.91186
[18] Hayenga, M.L., Jiang, B., et al.: Corn and Soybean Basis Behavior and Forecasting: Fundamental and Alternative Approaches. Tech. rep., Iowa State University, Department of Economics (1997)
[19] Hess, M.: Pricing Energy, Weather and Emission Derivatives Under Future Information. PhD thesis, Universitätsbibliothek Duisburg-Essen (2012)
[20] Hess, M., Pricing electricity forwards under future information on the stochastic mean-reversion level, Decis. Econ. Finance, 43, 2, 751-767 (2020) · Zbl 1465.91115 · doi:10.1007/s10203-020-00307-6
[21] Karali, B.: Do USDA announcements affect comovements across commodity futures returns? J. Agric. Resour. Econ. 77-97 (2012)
[22] Karali, B.; Isengildina-Massa, O.; Irwin, SH; Adjemian, MK; Johansson, R., Are USDA reports still news to changing crop markets?, Food Policy, 84, 66-76 (2019) · doi:10.1016/j.foodpol.2019.02.005
[23] Kristiansen, T., Forecasting Nord Pool day-ahead prices with an autoregressive model, Energy Policy, 49, 328-332 (2012) · doi:10.1016/j.enpol.2012.06.028
[24] Kristjanpoller, W.; Hernández, E., Volatility of main metals forecasted by a hybrid ANN-GARCH model with regressors, Expert Syst. Appl., 84, 290-300 (2017) · doi:10.1016/j.eswa.2017.05.024
[25] Müller, A.C., Guido, S., et al.: Introduction to Machine Learning with Python: A Guide for Data Scientists. O’Reilly Media, Inc., Newton (2016)
[26] Niu, D.; Liu, D.; Wu, DD, A soft computing system for day-ahead electricity price forecasting, Appl. Soft Comput., 10, 3, 868-875 (2010) · doi:10.1016/j.asoc.2009.10.004
[27] Nogales, FJ; Conejo, AJ, Electricity price forecasting through transfer function models, J. Oper. Res. Soc., 57, 4, 350-356 (2006) · Zbl 1086.91505 · doi:10.1057/palgrave.jors.2601995
[28] Pelleg, D., Moore, A.: X-means: extending k-means with efficient estimation of the number of clusters. In: Proceedings of the 17th International Conference on Machine Learning, Morgan Kaufmann, pp. 727-734 (2000)
[29] Refinitiv, E.: Corn Futures Prices. https://eikon.thomsonreuters.com/index.html (2020). 18 Jan 2020
[30] Rousseeuw, P., Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, J. Comput. Appl. Math., 20, 1, 53-65 (1987) · Zbl 0636.62059 · doi:10.1016/0377-0427(87)90125-7
[31] Sansom, DC; Downs, T.; Saha, TK, Evaluation of support vector machine based forecasting tool in electricity price forecasting for Australian national electricity market participants, J. Electr. Electron. Eng. Aust., 22, 3, 227 (2003)
[32] Schwartz, E.; Smith, JE, Short-term variations and long-term dynamics in commodity prices, Manag. Sci., 46, 7, 893-911 (2000) · doi:10.1287/mnsc.46.7.893.12034
[33] Schwartz, ES, The stochastic behavior of commodity prices: implications for valuation and hedging, J. Finance, 52, 3, 923-973 (1997) · doi:10.1111/j.1540-6261.1997.tb02721.x
[34] Schwarz, G., Estimating the dimension of a model, Ann. Stat., 6, 2, 461-464 (1978) · Zbl 0379.62005 · doi:10.1214/aos/1176344136
[35] Sørensen, C., Modeling seasonality in agricultural commodity futures, J. Futures Mark., 22, 5, 393-426 (2002) · doi:10.1002/fut.10017
[36] Summer, DA; Mueller, RA, Are harvest forecasts news? USDA announcements and futures market reactions, Am. J. Agric. Econ., 71, 1, 1-8 (1989) · doi:10.2307/1241769
[37] USDA: Foreign Agricultural Service. https://apps.fas.usda.gov/psdonline/app/index.html#/app/topCountriesByCommodity (2020a). 18 Jan 2020
[38] USDA: World Agricultural Supply and Demand Estimates. https://www.usda.gov/oce/commodity/wasde/ (2020b). 18 Jan 2020
[39] Weron, R.; Misiorek, A., Forecasting spot electricity prices: a comparison of parametric and semiparametric time series models, Int. J. Forecast., 24, 4, 744-763 (2008) · doi:10.1016/j.ijforecast.2008.08.004
[40] Zhu, Z.; Graham, P.; Reedman, L.; Lo, T., A scenario-based integrated approach for modeling carbon price risk, Decis. Econ. Finance, 32, 1, 35-48 (2009) · Zbl 1162.91447 · doi:10.1007/s10203-009-0086-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.