×

Schrödinger operators with potentials generated by hyperbolic transformations. I: Positivity of the Lyapunov exponent. (English) Zbl 1511.37038

The authors are interested in the Anderson localization phenomenon and write the present manuscript as part of a series of papers. Here they consider the one-dimensional discrete Schrödinger operators \(H_\omega\) in \(\ell^2 (\mathbb{Z} )\), given explicitly by \(H_\omega (n) = \psi(n+1) + \psi(n-1) + V_\omega(n) \psi(n)\). The potentials \(V_\omega: \mathbb{Z} \rightarrow \mathbb{R}\) are defined by \(V_\omega (n) = f (T^n \omega)\) for \(\omega \in \Omega\) and \(n \in \mathbb{Z}\). It is assumed that \(\Omega\) is a compact metric space, \(T: \Omega \rightarrow \Omega\) is a homeomorphism, and \(f: \Omega \rightarrow \mathbb{R}\) is continuous.
A generalization that incorporates most of the systems under study is the following: \((\Omega, T)\) is taken to be a subshift of finite type with a \(T\)-ergodic measure \(\mu\) entirely supported on \(\Omega\). It is also assumed that \(\mu\) allows a local product structure and that \(f:\Omega \rightarrow \mathbb{R}\) is a non-constant \(\alpha\)-Hölder continuous function for \(0 < \alpha \le 1\).
The authors are mainly interested in the Lyapunov exponent of the Schrödinger cocycle of the basic operator, and in particular in studying the set \(\mathcal{Z}_f\) where the Lyapunov exponent is zero. Their main result is that if \(T\) has a fixed point and \(f\) is Hölder continuous and non-constant, then \(\mathcal{Z}_f\) is discrete.

MSC:

37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
37B10 Symbolic dynamics
37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
39A70 Difference operators
39A12 Discrete version of topics in analysis
34L05 General spectral theory of ordinary differential operators
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)

References:

[1] Avila, A., Damanik, D., Zhang, Z.: Schrödinger operators with potentials generated by hyperbolic transformations: II. Large deviations and localization (in preparation)
[2] Avila, A.; Delecroix, V., Weak mixing directions in non-arithmetic Veech surfaces, J. Am. Math. Soc., 29, 1167-1208 (2016) · Zbl 1373.37005 · doi:10.1090/jams/856
[3] Avila, A.; Viana, M., Extremal Lyapunov exponents: an invariance principle and applications, Invent. Math., 181, 115-189 (2010) · Zbl 1196.37054 · doi:10.1007/s00222-010-0243-1
[4] Backes, L.; Brown, A.; Butler, C., Continuity of Lyapunov exponents for cocycles with invariant holonomies, J. Mod. Dyn., 12, 223-260 (2018) · Zbl 1409.37055 · doi:10.3934/jmd.2018009
[5] de Bièvre, S.; Germinet, F., Dynamical localization for the random dimer Schrödinger operator, J. Stat. Phys., 98, 1135-1148 (2000) · Zbl 1005.82028 · doi:10.1023/A:1018615728507
[6] Bjerklöv, K., Positive Lyapunov exponent for some Schrödinger cocycles over strongly expanding circle endomorphisms, Commun. Math. Phys., 379, 353-360 (2020) · Zbl 1451.37077 · doi:10.1007/s00220-020-03810-4
[7] Bonatti, C.; Gómez-Mont, X.; Viana, M., Généricité d’exposants de Lyapunov non-nuls pour des produits déterministes de matrices, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20, 579-624 (2003) · Zbl 1025.37018 · doi:10.1016/s0294-1449(02)00019-7
[8] Bonatti, C.; Viana, M., Lyapunov exponents with multiplicity \(1\) for deterministic products of matrices, Ergod. Theory Dyn. Syst., 24, 1295-1330 (2004) · Zbl 1087.37017 · doi:10.1017/S0143385703000695
[9] Bourgain, J.; Bourgain-Chang, E., A note on Lyapunov exponents of deterministic strongly mixing potentials, J. Spectr. Theory, 5, 1-15 (2015) · Zbl 1318.82021 · doi:10.4171/JST/89
[10] Bourgain, J.; Goldstein, M., On nonperturbative localization with quasi-periodic potential, Ann. Math., 152, 835-879 (2000) · Zbl 1053.39035 · doi:10.2307/2661356
[11] Bourgain, J.; Goldstein, M.; Schlag, W., Anderson localization for Schrödinger operators on \({{\mathbb{Z} }}\) with potentials given by the skew-shift, Commun. Math. Phys., 220, 583-621 (2001) · Zbl 0994.82044 · doi:10.1007/PL00005570
[12] Bourgain, J.; Schlag, W., Anderson localization for Schrödinger operators on \({{\mathbb{Z} }}\) with strongly mixing potentials, Commun. Math. Phys., 215, 143-175 (2000) · Zbl 1040.81014 · doi:10.1007/PL00005538
[13] Bowen, R., Periodic points and measures for Axiom A diffeomorphisms, Trans. Am. Math. Soc., 154, 377-397 (1971) · Zbl 0212.29103
[14] Bowen, R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (1975), Berlin: Springer, Berlin · Zbl 0308.28010
[15] Bucaj, V.: On the Kunz-Souillard approach to localization for the discrete one dimensional generalized Anderson model. Preprint arXiv:1608.01379
[16] Bucaj, V.; Damanik, D.; Fillman, J.; Gerbuz, V.; VandenBoom, T.; Wang, F.; Zhang, Z., Localization for the one-dimensional Anderson model via positivity and large deviations for the Lyapunov exponent, Trans. Am. Math. Soc., 372, 3619-3667 (2019) · Zbl 1422.35022 · doi:10.1090/tran/7832
[17] Butler, C., Measurable rigidity of the cohomological equation for linear cocycles over hyperbolic systems, Isr. J. Math., 227, 27-61 (2018) · Zbl 1409.37056 · doi:10.1007/s11856-018-1733-x
[18] Chulaevsky, V.; Spencer, T., Positive Lyapunov exponents for a class of deterministic potentials, Commun. Math. Phys., 168, 455-466 (1995) · Zbl 0821.60070 · doi:10.1007/BF02101838
[19] Damanik, D., Schrödinger operators with dynamically defined potentials, Ergod. Theory Dyn. Syst., 37, 1681-1764 (2017) · Zbl 1541.81060 · doi:10.1017/etds.2015.120
[20] Damanik, D., Fillman, J.: One-dimensional ergodic Schrödinger operators, I. General theory, Monograph (in preparation) · Zbl 1504.58001
[21] Damanik, D., Fillman, J.: One-dimensional ergodic Schrödinger operators, II. Special classes, Monograph (in preparation) · Zbl 1504.58001
[22] Damanik, D.; Killip, R., Almost everywhere positivity of the Lyapunov exponent for the doubling map, Commun. Math. Phys., 257, 287-290 (2005) · Zbl 1087.47037 · doi:10.1007/s00220-004-1261-x
[23] Damanik, D.; Tcheremchantsev, S., Power-law bounds on transfer matrices and quantum dynamics in one dimension, Commun. Math. Phys., 236, 513-534 (2003) · Zbl 1033.81032 · doi:10.1007/s00220-003-0824-6
[24] Deift, P.; Simon, B., Almost periodic Schrödinger operators. III. The absolutely continuous spectrum in one dimension, Commun. Math. Phys., 90, 389-411 (1983) · Zbl 0562.35026 · doi:10.1007/BF01206889
[25] Douady, A.; Earle, CJ, Conformally natural extension of homeomorphisms of the circle, Acta Math., 157, 23-48 (1986) · Zbl 0615.30005 · doi:10.1007/BF02392590
[26] Dunlap, D.; Wu, H-L; Phillips, P., Absence of localization in a random dimer model, Phys. Rev. Lett., 65, 88-91 (1990) · doi:10.1103/PhysRevLett.65.88
[27] Furstenberg, H., Noncommuting random products, Trans. Am. Math. Soc., 108, 377-428 (1963) · Zbl 0203.19102 · doi:10.1090/S0002-9947-1963-0163345-0
[28] Herman, M., Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2, Comment. Math Helv., 58, 453-502 (1983) · Zbl 0554.58034 · doi:10.1007/BF02564647
[29] Jitomirskaya, S.; Schulz-Baldes, H.; Stolz, G., Delocalization in random polymer models, Commun. Math. Phys., 233, 27-48 (2003) · Zbl 1013.82027 · doi:10.1007/s00220-002-0757-5
[30] Kalinin, B., Livšic theorem for matrix cocycles, Ann. Math., 173, 1025-1042 (2011) · Zbl 1238.37008 · doi:10.4007/annals.2011.173.2.11
[31] Katok, A.; Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0878.58020 · doi:10.1017/CBO9780511809187
[32] Pastur, L., Spectral properties of disordered systems in the one-body approximation, Commun. Math. Phys., 75, 179-196 (1980) · Zbl 0429.60099 · doi:10.1007/BF01222516
[33] Ledrappier, F., Positivity of the exponent for stationary sequences of matrices, Lect. Notes Math., 1186, 56-73 (1986) · Zbl 0591.60036 · doi:10.1007/BFb0076833
[34] Leplaideur, R., Local product structure for equilibrium states, Trans. Am. Math. Soc., 352, 1889-1912 (2000) · Zbl 0995.37017 · doi:10.1090/S0002-9947-99-02479-4
[35] Sadel, C.; Schulz-Baldes, H., Scaling diagram for the localization length at a band edge, Annales Henri Poincaré, 8, 1595-1621 (2007) · Zbl 1134.82027 · doi:10.1007/s00023-007-0347-3
[36] Sadel, C.; Schulz-Baldes, H., Positive Lyapunov exponents and localization bounds for strongly mixing potentials, Adv. Theor. Math. Phys., 12, 1377-1400 (2008) · Zbl 1151.81012 · doi:10.4310/ATMP.2008.v12.n6.a5
[37] Sigmund, K., On dynamical systems with the specification property, Trans. Am. Math. Soc., 190, 285-299 (1974) · Zbl 0286.28010 · doi:10.1090/S0002-9947-1974-0352411-X
[38] Simon, B.: Szegö’s theorem and its descendants. In: Spectral Theory for \(L^2\) Perturbations of Orthogonal Polynomials, M. B. Porter Lectures. Princeton University Press, Princeton, NJ (2011) · Zbl 1230.33001
[39] Viana, M., Almost all cocycles over any hyperbolic system have non-vanishing Lyapunov exponents, Ann. Math., 167, 643-680 (2008) · Zbl 1173.37019 · doi:10.4007/annals.2008.167.643
[40] Viana, M.; Yang, J., Continuity of Lyapunov exponents in the \(C^0\) topology, Isr. J. Math., 229, 461-485 (2019) · Zbl 1421.37023 · doi:10.1007/s11856-018-1809-7
[41] Young, L-S, Large deviations in dynamical systems, Trans. Am. Math. Soc., 318, 525-543 (1990) · Zbl 0721.58030
[42] Young, L-S, Some open sets of nonuniformly hyperbolic cocycles, Ergod. Theory Dyn. Syst., 13, 409-415 (1993) · Zbl 0797.58041 · doi:10.1017/S0143385700007446
[43] Zhang, Z., Uniform hyperbolicity and its relation with spectral analysis of 1D discrete Schrödinger operators, J. Spectr. Theory, 10, 1471-1517 (2020) · Zbl 1482.37030 · doi:10.4171/JST/333
[44] Zhang, Z.: Uniform positivity of the Lyapunov exponent for monotone potentials generated by the doubling map. Preprint arXiv:1610.02137
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.