×

Fuzzy-weighted differential evolution computing paradigm for fractional order nonlinear Wiener systems. (English) Zbl 1505.93270


MSC:

93E12 Identification in stochastic control theory
93C10 Nonlinear systems in control theory
26A33 Fractional derivatives and integrals
34K37 Functional-differential equations with fractional derivatives
34A08 Fractional ordinary differential equations

Software:

WH-EA
Full Text: DOI

References:

[1] Aguilar, C. Z.; Gómez-Aguilar, J. F.; Alvarado-Martínez, V. M.; Romero-Ugalde, H. M., Fractional order neural networks for system identification, Chaos Solitons Fractals, 130, Article 109444 pp. (2020) · Zbl 1489.93024
[2] Singh, A.; Moore, K. J., Characteristic nonlinear system identification of local attachments with clearance nonlinearities, Nonlinear Dyn, 102, 3, 1667-1684 (2020)
[3] Simorgh, A.; Razminia, A.; Shiryaev, V. I., System identification and control design of a nonlinear continuously stirred tank reactor, Math Comput Simul, 173, 16-31 (2020) · Zbl 1510.93075
[4] Chen, H.; Huang, L.; Yang, L.; Chen, Y.; Huang, J., Model-based method with nonlinear ultrasonic system identification for mechanical structural health assessment, Trans Emerg Telecommun Technol, 31, 12, Article e3955 pp. (2020)
[5] Zouari, F.; Ibeas, A.; Boulkroune, A.; Jinde, C. A.O.; Arefi, M. M., Neural network controller design for fractional-order systems with input nonlinearities and asymmetric time-varying pseudo-state constraints, Chaos Solitons Fractals, 144, Article 110742 pp. (2021)
[6] Stojanovic, V.; Prsic, D., Robust identification for fault detection in the presence of non-Gaussian noises: application to hydraulic servo drives, Nonlinear Dyn, 100, 3, 2299-2313 (2020) · Zbl 1516.93031
[7] Dong, X.; He, S.; Stojanovic, V., Robust fault detection filter design for a class of discrete-time conic-type non-linear Markov jump systems with jump fault signals, IET Control Theory Appl, 14, 14, 1912-1919 (2020) · Zbl 1542.93391
[8] Fang, H.; Zhu, G.; Stojanovic, V.; Nie, R.; He, S.; Luan, X.; Liu, F., Adaptive optimization algorithm for nonlinear Markov jump systems with partial unknown dynamics, Int J Robust Nonlinear Control, 31, 6, 2126-2140 (2021) · Zbl 1526.93276
[9] Sun, H.; Lv, W.; Khadidos, A. O.; Kharabsheh, R., Research on the influence of fuzzy mathematics simulation model in the development of wushu market, (Appl Math Nonlinear Sci (2021))
[10] Zhou, J.; Li, L.; Yu, Z., The transfer of stylised artistic images in eye movement experiments based on fuzzy differential equations, (Appl Math Nonlinear Sci (2021))
[11] Qu, L.; Katib, I.; Aouad, M., Application of fuzzy mathematics calculation in quantitative evaluation of students’ performance of basketball jump shot, (Appl Math Nonlinear Sci (2021))
[12] Brouri, A.; Chaoui, F. Z.; Giri, F., Identification of Hammerstein-Wiener models with hysteresis front nonlinearities, Int J Control, 1-15 (2021)
[13] Ji, Y.; Kang, Z.; Liu, X., The data filtering based multiple-stage Levenberg-Marquardt algorithm for Hammerstein nonlinear systems, Int J Robust Nonlinear Control, 31, 15, 7007-7025 (2021) · Zbl 1527.93457
[14] Mzyk, G.; Wachel, P., Wiener system identification by input injection method, Int J Adapt Control Signal Process, 34, 8, 1105-1119 (2020) · Zbl 1467.93320
[15] Bulhoes, J. S.; Martins, C. L.; Oliveira, M. D.; Calheiros, D. F.; Calixto, W. P., Indirect prediction system for variables that have gaps in their time series, Chaos Solitons Fractals, 131, Article 109509 pp. (2020) · Zbl 1495.62118
[16] Ji, Y.; Jiang, X.; Wan, L., Hierarchical least squares parameter estimation algorithm for two-input Hammerstein finite impulse response systems, J Franklin Inst, 357, 8, 5019-5032 (2020) · Zbl 1437.93131
[17] Li, J.; Zong, T.; Gu, J.; Hua, L., Parameter estimation of wiener systems based on the particle swarm iteration and gradient search principle, Circ Syst Signal Process, 39, 7, 3470-3495 (2020) · Zbl 1448.93062
[18] Chaudhary, N. I.; Latif, R.; Raja, M. A.Z.; Machado, J. T., An innovative fractional order LMS algorithm for power signal parameter estimation, App Math Model, 83, 703-718 (2020) · Zbl 1481.94050
[19] Chaudhary, N. I.; Raja, M. A.Z.; He, Y.; Khan, Z. A.; Machado, J. T., Design of multi innovation fractional LMS algorithm for parameter estimation of input nonlinear control autoregressive systems, App Math Model, 93, 412-425 (2021) · Zbl 1481.93148
[20] Alam, M.; Shah, D., Hyers-Ulam stability of coupled implicit fractional integro-differential equations with Riemann-Liouville derivatives, Chaos Solitons Fractals, 150, Article 111122 pp. (2021) · Zbl 1498.34207
[21] Akgül, A.; Rajagopal, K.; Durdu, A.; Pala, M. A.; Boyraz, Ö. F.; Yildiz, M. Z., A simple fractional-order chaotic system based on memristor and memcapacitor and its synchronization application, Chaos Solitons Fractals, 152, Article 111306 pp. (2021) · Zbl 1497.94209
[22] Yao, X.; Zhong, S., EID-based robust stabilization for delayed fractional-order nonlinear uncertain system with application in memristive neural networks, Chaos Solitons Fractals, 144, Article 110705 pp. (2021)
[23] Al-Nassir, S., Dynamic analysis of a harvested fractional-order biological system with its discretization, Chaos Solitons Fractals, 152, Article 111308 pp. (2021) · Zbl 1498.92144
[24] Abuaisha, T.; Kertzscher, J., Fractional-order modelling and parameter identification of electrical coils, Fractional Calc Appl Anal, 22, 1, 193-216 (2019) · Zbl 1427.78013
[25] Hu, X.; Song, Q.; Ge, M.; Li, R., Fractional-order adaptive fault-tolerant control for a class of general nonlinear systems, Nonlinear Dyn, 101, 1, 379-392 (2020) · Zbl 1516.93127
[26] Fendzi-Donfack, E.; Nguenang, J. P.; Nana, L., On the soliton solutions for an intrinsic fractional discrete nonlinear electrical transmission line, Nonlinear Dyn, 104, 1, 691-704 (2021)
[27] Lin, X.; Wang, Y.; Wu, G.; Hao, J., Image denoising of adaptive fractional operator based on Atangana-Baleanu derivatives, J Math, 2021 (2021) · Zbl 1477.94017
[28] Duc, T. M.; Van Hoa, N., Stabilization of impulsive fractional-order dynamic systems involving the caputo fractional derivative of variable-order via a linear feedback controller, Chaos Solitons Fractals, 153, Article 111525 pp. (2021) · Zbl 1498.34022
[29] Sersour, L.; Djamah, T.; Bettayeb, M., Nonlinear system identification of fractional wiener models, Nonlinear Dyn, 92, 4, 1493-1505 (2018)
[30] Kothari, K.; Mehta, U.; Prasad, V.; Vanualailai, J., Identification scheme for fractional hammerstein models with the delayed Haar wavelet, IEEE/CAA J Autom Sin, 7, 3, 882-891 (2020)
[31] Liao, Z.; Zhu, Z.; Liang, S.; Peng, C.; Wang, Y., Subspace identification for fractional order Hammerstein systems based on instrumental variables, Int J Control Autom Syst, 10, 5, 947-953 (2012)
[32] Wang, R.; YunNing, Z.; Chen, Y.; Chen, X.; Lei, X., Fuzzy neural network-based chaos synchronization for a class of fractional-order chaotic systems: an adaptive sliding mode control approach, Nonlinear Dyn, 100, 2, 1275-1287 (2020) · Zbl 1459.34144
[33] Lu, Y.; Tang, Y.; Zhang, X.; Wang, S., Parameter identification of fractional order systems with nonzero initial conditions based on block pulse functions, Measurement, 158, Article 107684 pp. (2020)
[34] Hammar, K.; Djamah, T.; Bettayeb, M., Identification of fractional Hammerstein system with application to a heating process, Nonlinear Dyn, 96, 4, 2613-2626 (2019)
[35] Ji, Y.; Wang, J.; Meng, X., Iterative Parameter Identification for Fractional-order Block-oriented Nonlinear Systems With Application to a Battery Model (2021)
[36] Vanbeylen, L., A fractional approach to identify Wiener-Hammerstein systems, Automatica, 50, 3, 903-909 (2014) · Zbl 1298.93345
[37] Zhao, Y.; Li, Y.; Chen, Y., Complete parametric identification of fractional order Hammerstein systems, (ICFDA’14 international conference on fractional differentiation and its applications 2014 (2014), IEEE), 1-6
[38] Zúñiga-Aguilar, C. J.; Gómez-Aguilar, J. F.; Romero-Ugalde, H. M.; Jahanshahi, H.; Alsaadi, F. E., Fractal-fractional neuro-adaptive method for system identification, Eng Comput, 1-24 (2021)
[39] Jahani Moghaddam, M.; Mojallali, H.; Teshnehlab, M., A multiple-input-single-output fractional-order Hammerstein model identification based on modified neural network, Math Methods Appl Sci, 41, 16, 6252-6271 (2018) · Zbl 1403.93188
[40] Jadoon, I.; Ahmed, A.; ur Rehman, A.; Shoaib, M.; Raja, M. A.Z., Integrated meta-heuristics finite difference method for the dynamics of nonlinear unipolar electrohydrodynamic pump flow model, Appl Soft Comput, 97, 106791 (2020)
[41] Jamal, R.; Men, B.; Khan, N. H.; Raja, M. A.Z., Hybrid bio-inspired computational heuristic paradigm for integrated load dispatch problems involving stochastic wind, Energies, 12, 13, 2568 (2019)
[42] Raja, M. A.Z.; Aslam, M. S.; Chaudhary, N. I.; Khan, W. U., Bio-inspired heuristics hybrid with interior-point method for active noise control systems without identification of secondary path, Front Inf Technol Electron Eng, 19, 2, 246-259 (2018)
[43] Mehmood, A.; Zameer, A.; Ling, S. H.; ur Rehman, A.; Raja, M. A.Z., Integrated computational intelligent paradigm for nonlinear electric circuit models using neural networks, genetic algorithms and sequential quadratic programming, Neural Comput Appl, 32, 14, 10337-10357 (2020)
[44] Sabir, Z.; Raja, M. A.Z.; Guirao, J. L.; Saeed, T., Meyer wavelet neural networks to solve a novel design of fractional order pantograph Lane-Emden differential model, Chaos Solitons Fractals, 152, Article 111404 pp. (2021) · Zbl 1503.65152
[45] Wang, R.; YunNing, Z.; Chen, Y.; Chen, X.; Lei, X., Fuzzy neural network-based chaos synchronization for a class of fractional-order chaotic systems: an adaptive sliding mode control approach, Nonlinear Dyn, 100, 2, 1275-1287 (2020) · Zbl 1459.34144
[46] Tuan, H. T.; Trinh, H., A qualitative theory of time delay nonlinear fractional-order systems, SIAM J Control Optim, 58, 3, 1491-1518 (2020) · Zbl 1450.34059
[47] Song, S.; Park, J. H.; Zhang, B.; Song, X., Adaptive hybrid fuzzy output feedback control for fractional-order nonlinear systems with time-varying delays and input saturation, Appl Math Comput, 364, Article 124662 pp. (2020) · Zbl 1433.93059
[48] Mehmood, A.; Zameer, A.; Ling, S. H.; ur Rehman, A.; Raja, M. A.Z., Integrated computational intelligent paradigm for nonlinear electric circuit models using neural networks, genetic algorithms and sequential quadratic programming, Neural Comput Appl, 32, 14, 10337-10357 (2020)
[49] Mehmood, A.; Zameer, A.; Chaudhary, N. I.; Raja, M. A.Z., Backtracking search heuristics for identification of electrical muscle stimulation models using Hammerstein structure, Appl Soft Comput, 84, Article 105705 pp. (2019)
[50] Zambrano, J.; Sanchis, J.; Herrero, J. M.; Martínez, M., WH-EA: an evolutionary algorithm for Wiener-Hammerstein system identification, Complexity, 2018 (2018) · Zbl 1398.93351
[51] Zambrano, J.; Sanchis, J.; Herrero, J. M.; Martínez, M., WHMOEA: a multi-objective evolutionary algorithm for Wiener-Hammerstein system identification. A novel approach for trade-off analysis between complexity and accuracy, IEEE Access, 8, 228655-228674 (2020)
[52] Civicioglu, P.; Besdok, E.; Gunen, M. A.; Atasever, U. H., Weighted differential evolution algorithm for numerical function optimization: a comparative study with cuckoo search, artificial bee colony, adaptive differential evolution, and backtracking search optimization algorithms, Neural Comput Appl, 32, 8, 3923-3937 (2020)
[53] Gunen, M. A.; Besdok, E.; Civicioglu, P.; Atasever, U. H., Camera calibration by using weighted differential evolution algorithm: a comparative study with ABC, PSO, COBIDE, DE, CS, GWO, TLBO, MVMO, FOA, LSHADE, ZHANG and BOUGUET, Neural Comput Appl, 32, 23, 17681-17701 (2020)
[54] Wang, Y.; Khadidos, A. O., The influence of X fuzzy mathematical method on basketball tactics scoring, (Appl Math Nonlinear Sci (2021))
[55] Liu, Y.; Chen, C.; Alotaibi, R.; Shorman, S. M., Study on audio-visual family restoration of children with mental disorders based on the mathematical model of fuzzy comprehensive evaluation of differential equation, (Appl Math Nonlinear Sci (2021))
[56] Atangana, A., Modelling the spread of COVID-19 with new fractal-fractional operators: can the lockdown save mankind before vaccination?, Chaos Solitons Fractals, 136, Article 109860 pp. (2020)
[57] Atangana, A., Fractional discretization: the African’s tortoise walk, Chaos Solitons Fractals, 130, Article 109399 pp. (2020)
[58] Qureshi, S.; Atangana, A., Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data, Chaos Solitons Fractals, 136, Article 109812 pp. (2020)
[59] Atangana, A.; Araz, S.İ., New concept in calculus: piecewise differential and integral operators, Chaos Solitons Fractals, 145, Article 110638 pp. (2021)
[60] Sabir, Z.; Umar, M.; Raja, M. A.Z.; Fathurrochman, I.; Hasan, H., Design of Morlet wavelet neural network to solve the non-linear influenza disease system, (Appl Math Nonlinear Sci (2022))
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.