×

Minimal hexagonal chains with respect to the Kirchhoff index. (English) Zbl 1497.05046

Summary: Let \(G\) be a connected graph. The resistance distance between any two vertices of \(G\) is equal to the effective resistance between them in the corresponding electrical network constructed from \(G\) by replacing each edge with a unit resistor. The Kirchhoff index of \(G\) is defined as the sum of resistance distances between all pairs of vertices. Hexagonal chains are graph representations of unbranched catacondensed benzenoid hydrocarbons. It was shown in Y. Yang and D. J. Klein [Discrete Appl. Math. 175, 87–93 (2014; Zbl 1297.05078)] that among all hexagonal chains with \(n\) hexagons, the linear chain \(L_n\) is the unique chain with maximum Kirchhoff index. However, for hexagonal chains with minimum Kirchhoff index, it was only claimed that the minimum Kirchhoff index is attained only when the hexagonal chain is an “all-kink” chain. In this paper, by standard techniques of electrical networks and comparison results on Kirchhoff indices of \(S\), \(T\)-isomers, “all-kink” chains with maximum and minimum Kirchhoff indices are characterized. As a consequence, hexagonal chains with minimum Kirchhoff indices are singled out.

MSC:

05C09 Graphical indices (Wiener index, Zagreb index, Randić index, etc.)
05C92 Chemical graph theory
05C12 Distance in graphs
05C40 Connectivity
92E10 Molecular structure (graph-theoretic methods, methods of differential topology, etc.)

Citations:

Zbl 1297.05078
Full Text: DOI

References:

[1] Azimi, A.; Bapat, R. B.; Farrokhi D. G., M., Resistance distance of blowups of trees, Discrete Math., 344, 7, Article 11238 pp. (2021) · Zbl 1466.05032
[2] Barrett, W.; Evans, E. J.; Francis, A. E., Resistance distance and spanning 2-forest matrices of linear 2-trees, Linear Algebra Appl., 606, 41-67 (2020) · Zbl 1447.05068
[3] Carmona, A.; Encinas, A. M.; Mitjana, M., Kirchhoff index of periodic linear chains, J. Math. Chem., 53, 1195-1206 (2015) · Zbl 1331.92165
[4] Carmona, A.; Encinas, A. M.; Mitjana, M., Resistance distances in extended or contracted networks, Linear Algebra Appl., 576, 5-34 (2019) · Zbl 1416.05088
[5] Chen, B.; Huang, J., On unitary Cayley graphs of matrix rings, Discrete Math., 345, 1, Article 112671 pp. (2022) · Zbl 1479.05141
[6] Chen, Y.; Yan, W., On the Kirchhoff index of a unicyclic graph and the matchings of the subdivision, Discrete Appl. Math., 300, 19-24 (2021) · Zbl 1465.05034
[7] Choi, M. C.H., On resistance distance of Markov chain and its sum rules, Linear Algebra Appl., 571, 14-25 (2019) · Zbl 1414.60056
[8] Clar, E.; Schoental, R., Polycyclic Hydrocarbons (1964), Academic Press: Academic Press London
[9] Devriendt, K., Effective resistance is more than distance: Laplacians, simplices and the Schur complement, Linear Algebra Appl., 639, 24-49 (2022) · Zbl 1482.05083
[10] Fries, K., Über bicyclische Verbindungen und ihren Vergleich mit dem Naphtalin. III. Mitteilung, Justus Liebigs Ann. Chem., 454, 121-324 (1927)
[11] Ge, J., Effective resistances and spanning trees in the complete bipartite graph plus a matching, Discrete Appl. Math., 305, 145-153 (2021) · Zbl 1485.05043
[12] Hong, Y.; Zhu, Z.; Luo, A., Extremal graphs with diameter 2 for two indices on resistance-distance, Discrete Math., 342, 2, 487-497 (2019) · Zbl 1400.05125
[13] Huang, J., Resistance distance and Kirchhoff index in dihedral Cayley graphs, Discrete Appl. Math., 307, 125-134 (2022) · Zbl 1479.05143
[14] Huang, S.; Li, S., On the resistance distance and Kirchhoff index of a linear hexagonal (cylinder) chain, Physica A, 558, Article 124999 pp. (2020) · Zbl 07531998
[15] Jiang, X.; He, W.; Liu, Q.; Li, J., On the Kirchhoff index of bipartite graphs with given diameters, Discrete Appl. Math., 283, 512-521 (2020) · Zbl 1442.05037
[16] Karelson, M.; Lobanov, V. S.; Katritzky, A. R., Quantum-chemical descriptors in QSAR / QSPR studies, Chem. Rev., 96, 1027-1044 (1996)
[17] Kennelly, A. E., Equivalence of triangles and stars in conducting networks, Electr. World Eng., 34, 413-414 (1899)
[18] Klein, D. J.; Randić, M., Resistance distance, J. Math. Chem., 12, 81-95 (1993)
[19] Kook, W.; Lee, K. J., Kirchhoff index of simplicial networks, Linear Algebra Appl., 626, 1-19 (2021) · Zbl 1469.05169
[20] Li, J.; Wang, W., The (degree-) Kirchhoff indices in random polygonal chains, Discrete Appl. Math., 304, 63-75 (2021) · Zbl 1473.05064
[21] Liu, J.; Zhang, T.; Wang, Y.; Lin, W., The Kirchhoff index and spanning trees of Möbius/Cylinder octagonal chain, Discrete Appl. Math., 307, 22-31 (2022) · Zbl 1479.05067
[22] Polansky, O. E.; Zander, M., Topological effects on MO energies, J. Mol. Struct., 84, 361-385 (1982)
[23] Que, L.; Chen, H., On the Kirchhoff index of a graph and the matchings of the subdivision, Discrete Appl. Math., 310, 91-96 (2022) · Zbl 1482.05059
[24] Schultz, T. W.; Cronin, M. T.D.; Walker, J. D.; Aptula, A. O., Quantitative structure-activity relationships (QSARS) in toxicology: a historical perspective, J. Mol. Struct., 622, 1-22 (2003)
[25] Sun, L.; Shang, Z.; Bu, C., Resistance distance and Kirchhoff index of the Q-vertex (or edge) join graphs, Discrete Math., 344, 8, Article 112433 pp. (2021) · Zbl 1466.05058
[26] Wang, D.; Yang, Y., Resistance distances in linear polyacene graphs, Front. Phys., 8, Article 600960 pp. (2021)
[27] Wang, G.; Xu, B., Kirchhoff index of hexagonal Möbius graphs, (Proc. Int. Conf. Multimedia Tech. (2011)), 5912-5915
[28] Wiener, H., Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69, 17-20 (1947)
[29] Xu, S.; Li, Y.; Hua, H.; Pan, X., On the resistance diameters of graphs and their line graphs, Discrete Appl. Math., 306, 174-185 (2022) · Zbl 1477.05069
[30] Yang, Y.; Klein, D. J., Comparison theorems on resistance distances and Kirchhoff indices of \(S, T\)-isomers, Discrete Appl. Math., 175, 87-93 (2014) · Zbl 1297.05078
[31] Yang, Y.; Zhang, H., Kirchhoff index of linear hexagonal chains, Int. J. Quant. Chem., 108, 503-512 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.