×

\(\mathbb{K}\)-homogeneous tuple of operators on bounded symmetric domains. (English) Zbl 1506.47039

The authors present a model for a class of \(\mathbb{K}\)-homogeneous \(d\)-tuples \(T\) as the operators of multiplication by the coordinate functions on a reproducing kernel Hilbert space of holomorphic functions defined on an irreducible bounded symmetric domain \(\Omega\) of rank \(r\) in \(\mathbb{C}^d\), and considering \(\mathbb{K}\) to be the subgroup of linear automorphisms in \(G\) (the connected component of identity in the group of biholomorphic automorphisms of \(\Omega\), equipped with the topology of uniform convergence on compact subsets of \(\Omega\)). The description of that model allows the deduction of several properties. Namely: (i) the determination of which \(d\)-tuple of multiplication operators on the weighted Bergman spaces are bounded; (ii) a certain comparison with the Cowen-Douglas class; and (iii) unitary equivalence and similarity of those \(d\)-tuples.

MSC:

47B32 Linear operators in reproducing-kernel Hilbert spaces (including de Branges, de Branges-Rovnyak, and other structured spaces)
32A35 \(H^p\)-spaces, Nevanlinna spaces of functions in several complex variables
32M15 Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects)
46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces)
47A13 Several-variable operator theory (spectral, Fredholm, etc.)
47B13 Cowen-Douglas operators

References:

[1] Arazy, J., A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains, Multivariable Operator Theory (Seattle, WA, 1993), 7-65 (1995), Providence, RI: American mathematical Society, Providence, RI · Zbl 0831.46014 · doi:10.1090/conm/185/02147
[2] Arazy, J.; Zhang, G., Homogeneous multiplication operators on bounded symmetric domains, Journal of Functional Analysis, 202, 44-66 (2003) · Zbl 1039.47020 · doi:10.1016/S0022-1236(02)00072-1
[3] Aronszajn, N., Theory of reproducing kernels, Transactions of the American Mathematical Society, 68, 337-404 (1950) · Zbl 0037.20701 · doi:10.1090/S0002-9947-1950-0051437-7
[4] Arveson, W.; Hadwin, D. W.; Hoover, T. B.; Kymala, E. E., Circular operators, Indiana University Mathematics Journal, 33, 583-595 (1984) · Zbl 0586.47021 · doi:10.1512/iumj.1984.33.33031
[5] Athavale, A., A note on Cartan isometries, New York Journal of Mathematics, 25, 934-948 (2019) · Zbl 1509.47011
[6] Bagchi, B.; Misra, G., Homogeneous tuples of multiplication operators on twisted Bergman spaces, Journal of Functional Analysis, 136, 171-213 (1996) · Zbl 0867.47022 · doi:10.1006/jfan.1996.0026
[7] Cartan, E., Sur les domaines bornés homogénes de l’espace den variables complexes, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 11, 116-162 (1935) · JFM 61.0370.03 · doi:10.1007/BF02940719
[8] Chavan, S.; Yakubovich, D., Spherical tuples of Hilbert space operators, Indiana University Mathematics Journal, 64, 577-612 (2015) · Zbl 1325.47013 · doi:10.1512/iumj.2015.64.5471
[9] Cowen, M. J.; Douglas, R. G., Complex geometry and operator theory, Acta Mathematica, 141, 187-261 (1978) · Zbl 0427.47016 · doi:10.1007/BF02545748
[10] Cowen, M. J.; Douglas, R. G., Operators possessing an open set of eigenvalues, Functions, Series, Operators, Vols. I, II (Budapest, 1980), 323-341 (1983), Amsterdam: North-Holland, Amsterdam · Zbl 0584.47002
[11] Curto, R. E.; Salinas, N., Generalized bergman kernels and the cowen-douglas theory, American Journal of Mathematics, 106, 447-488 (1984) · Zbl 0583.47037 · doi:10.2307/2374310
[12] Douglas, R. G.; Misra, G., Equivalence of quotient Hilbert modules, Indian Academy of Sciences. Proceedings. Mathematical Sciences, 113, 281-291 (2003) · Zbl 1066.46043 · doi:10.1007/BF02829607
[13] Eschmeier, J.; Putinar, M., Spectral Decompositions and Analytic Sheaves (1989), New York: The Clarendon Press, Oxford University Press, New York · Zbl 0855.47013
[14] Faraut, J.; Korányi, A., Function spaces and reproducing kernels on bounded symmetric domains, Journal of Functional Analysis, 88, 64-89 (1990) · Zbl 0718.32026 · doi:10.1016/0022-1236(90)90119-6
[15] Gellar, R., Circularly symmetric normal and subnormal operators, Journal d’Analyse Mathématique, 32, 93-117 (1977) · Zbl 0386.47008 · doi:10.1007/BF02803577
[16] Hua, L. K., Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains (1979), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0507.32025
[17] Korányi, A.; Misra, G., A classification of homogeneous operators in the Cowen-Douglas class, Advances in Mathematics, 226, 5338-5360 (2011) · Zbl 1220.47026 · doi:10.1016/j.aim.2011.01.012
[18] Korányi, A.; Misra, G., Homogeneous Hermitian holomorphic vector bundles and the Cowen-Douglas class over bounded symmetric domains, Advances in Mathematics, 351, 1105-1138 (2019) · Zbl 1477.32035 · doi:10.1016/j.aim.2019.05.018
[19] Kumar, S., Spherically balanced Hilbert spaces of formal power series in several variables-II, Complex Analysis and Operator Theory, 10, 505-526 (2016) · Zbl 1338.47006 · doi:10.1007/s11785-015-0462-y
[20] Loos, O., Bounded symmetric domains and Jordan pairs (1977), Irvine: University of California, Irvine
[21] Misra, G., Curvature and the backward shift operators, Proceedings of the American Mathematical Society, 91, 105-107 (1984) · Zbl 0548.47015 · doi:10.1090/S0002-9939-1984-0735574-5
[22] Misra, G.; Sastry, N. S N., Homogeneous tuples of operators and representations of some classical groups, Journal of Operator Theory, 24, 23-32 (1990) · Zbl 0776.47006
[23] Misra, G.; Upmeier, H., Homogeneous vector bundles and intertwining operators for symmetric domains, Advances in Mathematics, 303, 1077-1121 (2016) · Zbl 1353.47049 · doi:10.1016/j.aim.2016.08.036
[24] Mok, N., Metric Rigidity Theorems on Hermitian Localy Symetric Manifold (1989), Teaneck, NJ: World Scientific, Teaneck, NJ · Zbl 0912.32026 · doi:10.1142/0773
[25] Narasimhan, R., Several Complex Variables (1971), Chicago, IL-London: The University of Chicago Press, Chicago, IL-London · Zbl 0223.32001
[26] Paulsen, V. I.; Raghupathi, M., An Introduction to the Theory of Reproducing Kernel Hilbert Spaces (2016), Cambridge: Cambridge University Press, Cambridge · Zbl 1364.46004 · doi:10.1017/CBO9781316219232
[27] Shields, A., Weighted shift operators and analytic function theory, Topics in Operator Theory, 49-128 (1974), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0303.47021 · doi:10.1090/surv/013/02
[28] Upmeier, H., Jordan algebras and harmonic analysis on symmetric spaces, American Journal of Mathematics, 108, 1-25 (1986) · Zbl 0603.46055 · doi:10.2307/2374466
[29] Upmeier, H., Toeplitz Operators and Index Theory in Several Complex Variables (1996), Basel: Birkhäuser, Basel · Zbl 0957.47023
[30] H. Upmeier, Eigenvalues for K-invariant Toeplitz operators on bounded symmetric domains, Integral Equations and Operator Theory 93 (2021), Article no. 27. · Zbl 1487.47051
[31] Wilkins, D. R., Homogeneous vector bundles and Cowen-Douglas operators, International Journal of Mathematics, 4, 503-520 (1993) · Zbl 0805.32015 · doi:10.1142/S0129167X93000261
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.