×

On two coupled degenerate parabolic equations motivated by thermodynamics. (English) Zbl 1512.35393

Summary: We discuss a system of two coupled parabolic equations that have degenerate diffusion constants depending on the energy-like variable. The dissipation of the velocity-like variable is fed as a source term into the energy equation leading to conservation of the total energy. The motivation of studying this system comes from Prandtl’s and Kolmogorov’s one- and two-equation models for turbulence, where the energy-like variable is the mean turbulent kinetic energy. Because of the degeneracies, there are solutions with time-dependent support like in the porous medium equation, which is contained in our system as a special case. The motion of the free boundary may be driven by either self-diffusion of the energy-like variable or by dissipation of the velocity-like variable. The crossover of these two phenomena is exemplified for the associated planar traveling fronts. We provide existence of suitably defined weak and very weak solutions. After providing a thermodynamically motivated gradient structure, we also establish convergence into steady state for bounded domains and provide a conjecture on the asymptotically self-similar behavior of the solutions in \(\mathbb{R}^d\) for large times.

MSC:

35K65 Degenerate parabolic equations
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
49S05 Variational principles of physics
80M30 Variational methods applied to problems in thermodynamics and heat transfer

References:

[1] Amann, H.: Dynamic theory of quasilinear parabolic systems. III: global existence. Math. Z. 202:2 (1989) 219-250, Erratum Vol. 205, page 331 · Zbl 0702.35125
[2] Bertsch, M.; Kamin, S., A system of degenerate parabolic equations, SIAM J. Math. Anal., 21, 4, 905-916 (1990) · Zbl 0733.35064 · doi:10.1137/0521050
[3] Bulíček, M.; Feireisl, E.; Málek, J., A Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients, Nonlinear Anal. RWA, 10, 2, 992-1015 (2009) · Zbl 1167.76316 · doi:10.1016/j.nonrwa.2007.11.018
[4] Březina, J.; Feireisl, E.; Novotný, A., On convergence to equilibria of flows of compressible viscous fluids under in/out-flux boundary conditions, Discrete Contin. Dyn. Syst., 41, 8, 3615-3627 (2021) · Zbl 1470.35254 · doi:10.3934/dcds.2021009
[5] Boccardo, L.; Gallouët, T.; Orsina, L., Nonlinear eparabolic equations with measure data, J. Funct. Anal., 147, 1, 237-258 (1997) · Zbl 0887.35082 · doi:10.1006/jfan.1996.3040
[6] Bulíček, M.; Lewandowski, R.; Málek, J., On evolutionary Navier-Stokes-Fourier type systems in three spatial dimensions, Comment. Math. Univ. Carolin., 52, 1, 89-114 (2011) · Zbl 1240.35378
[7] Boccardo, L.; Gallouët, T., Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87, 1, 149-169 (1989) · Zbl 0707.35060 · doi:10.1016/0022-1236(89)90005-0
[8] Bulíček, M.; Málek, J., Large data analysis for Kolmogorov’s two-equation model of turbulence, Nonlinear Anal. Real World Appl., 50, 104-143 (2019) · Zbl 1448.76094 · doi:10.1016/j.nonrwa.2019.04.008
[9] Carrillo, JA; Toscani, G., Asymptotic \(L^1\)-decay of solutions of the prous medium equation to self-similarity, Indiana Univ. Math. J., 49, 1, 113-142 (2000) · Zbl 0963.35098 · doi:10.1512/iumj.2000.49.1756
[10] Chacón Rebello, T.; Lewandowski, R., Mathematical and Numerical Foundations of Turbulence Models and Applications (2014), New York: Springer, New York · Zbl 1328.76002 · doi:10.1007/978-1-4939-0455-6
[11] Dal Passo, R.; Giacomelli, L., Weak solutions of a strongly coupled degenerate parabolic system, Adv. Differ. Equ., 4, 5, 617-638 (1999) · Zbl 0947.35084
[12] Dostalík, M.; Průša, V.; Rajagopal, KR, Unconditional finite amplitude stability of a fluid in a mechanically isolated vessel with spatially non-uniform wall temperature, Contin. Mech. Thermodyn., 33, 2, 515-543 (2021) · Zbl 1521.76925 · doi:10.1007/s00161-020-00925-w
[13] Druet, P-É; Naumann, J., On the existence of weak solutions to a stationary one-equation RANS model with unbounded eddy viscosities, Ann. Univ. Ferrara, 55, 67-87 (2009) · Zbl 1400.76022 · doi:10.1007/s11565-009-0062-8
[14] Fanelli, F., Granero-Belinchón, R.: Finite time blow-up for some parabolic systems arising in turbulence theory. Z. angew. Math. Physik 73, 180 (2022) arXiv: 2204.04934 · Zbl 1495.35105
[15] Feireisl, E.; Málek, J., On the Navier-Stokes equations with temperature-dependent transport coefficients, Differ. Equ. Nonl. Mech. Art. ID, 90616, 1-14 (2006) · Zbl 1133.35419
[16] Gallay, T.; Mielke, A., Diffusive mixing of stable states in the Ginzburg-Landau equation, Commun. Math. Phys., 199, 1, 71-97 (1998) · Zbl 1102.35365 · doi:10.1007/s002200050495
[17] Gallouët, T.; Lederer, J.; Lewandowski, R.; Murat, F.; Tartar, L., On a turbulent system with unbounded eddy viscosities, Nonlinear Anal., 52, 4, 1051-1068 (2003) · Zbl 1013.35068 · doi:10.1016/S0362-546X(01)00890-2
[18] Haskovec, J.; Hittmeir, S.; Markowich, PA; Mielke, A., Decay to equilibrium for energy-reaction-diffusion systems, SIAM J. Math. Anal., 50, 1, 1037-1075 (2018) · Zbl 1387.35352 · doi:10.1137/16M1062065
[19] Hyman, JM; Rosenau, P., Analysis of nonlinear parabolic equations modeling plasma diffusion across a magnetic field. Nonlinear systems of partial differential equations in applied mathematics, Lect. Appl. Math., 23, 219-245 (1986) · Zbl 0612.35071
[20] Kolmogorov, AN, The equations of turbulent motion of an incompressible fluid, Izv. Akad. Nauk SSSR Ser. Fiz., 6, 1-2, 56-58 (1942)
[21] Lederer, J.; Lewandowski, R., A RANS 3D model with unbounded eddy viscosities, Ann. I.H. Poincaré Ana. Nonlinear, 24, 413-441 (2007) · Zbl 1132.35069 · doi:10.1016/j.anihpc.2006.03.011
[22] Lewandowski, R., The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity, Nonlinear Anal. TMA, 28, 393-417 (1997) · Zbl 0863.35077 · doi:10.1016/0362-546X(95)00149-P
[23] Lions, J-L, Quelques méthodes de résolution des problèmes aux limites non linéaires (1969), Paris: Dunod et Gauthier Villars, Paris · Zbl 0189.40603
[24] Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems (1995), Basel: Birkhäuser, Basel · Zbl 0816.35001 · doi:10.1007/978-3-0348-0557-5
[25] Mielke, A.: On evolutionary \(\Gamma \)-convergence for gradient systems (Ch. 3), Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity. In: Muntean, A., Rademacher, J., Zagaris, A. (eds.) Proceedings of Summer School in Twente University, June 2012. Lecture Notes in Applied Mathematics Mechanics, vol. 3, pp. 187-249. Springer, Berlin (2016) · Zbl 1330.37003
[26] Mielke, A.; Mittnenzweig, M., Convergence to equilibrium in energy-reaction-diffusion systems using vector-valued functional inequalities, J. Nonlinear Sci., 28, 2, 765-806 (2018) · Zbl 1390.35156 · doi:10.1007/s00332-017-9427-9
[27] Mielke, A.; Naumann, J., Global-in-time existence of weak solutions to Kolmogorov’s two-equation model of turbulence. C.R, Acad. Sci. Paris Ser. I, 353, 321-326 (2015) · Zbl 1320.35262 · doi:10.1016/j.crma.2015.02.003
[28] Mielke, A., Naumann, J.: On the existence of global-in-time weak solutions and scaling laws for Kolmogorov’s two-equation model of turbulence. Z. Angew. Math. Mech. (ZAMM) 102:9 e202000019/1-31 (2022) · Zbl 1534.76036
[29] Mielke, A., Schindler, S.: Existence of similarity profiles for systems of diffusion equations. Preprint arXiv: 2301.10360 (2023)
[30] Moussa, A., Some variants of the classical Aubin-Lions lemma, J. Evol. Equ., 16, 1, 65-93 (2016) · Zbl 1376.46015 · doi:10.1007/s00028-015-0293-3
[31] Naumann, J., Degenerate parabolic problems in turbulence modelling, Boll. Accad. Gioenia Sci. Nat. Catania, 46, 376, 18-43 (2013)
[32] Naumann, J.; Wolf, J., On Prandtl’s turbulence model: existence of weak solutions to the equations of stationary turbulent pipe-flow, Discr. Cont. Dynam. Systems Ser. S, 6, 5, 1371-1390 (2013) · Zbl 1263.35182
[33] Otto, F., The geometry of dissipative evolution equations: the porous medium equation, Commun. Partial Differ. Equ., 26, 101-174 (2001) · Zbl 0984.35089 · doi:10.1081/PDE-100002243
[34] Peletier, M.A.: Variational modelling: energies, gradient flows, and large deviations. arXiv:1402.1990 (2014)
[35] Prandtl, L., Bericht über Untersuchungen zur ausgebildeten Turbulenz, Z. Angew. Math. Mech. (ZAMM), 5, 136-139 (1925) · JFM 51.0666.08 · doi:10.1002/zamm.19250050212
[36] Prandtl, L., Über ein neues Formelsystem für die ausgebildete Turbulenz. Nachr. Akad. Wiss. Göttingen, Math. Phys., 1, 6-19 (1946) · Zbl 0061.45401
[37] Ransford, T., Potential Theory in the Complex Plane (1995), London: London Mathematical Society, London · Zbl 0828.31001 · doi:10.1017/CBO9780511623776
[38] Rosenau, P.; Hyman, JM, Analysis of nonlinear mass and energy diffusion, Phys. Rev. A, 32, 2370-2373 (1985) · doi:10.1103/PhysRevA.32.2370
[39] Rosenau, P.; Hyman, JM, Plasma diffusion across a magnetic field, Physica D, 20, 444-446 (1986) · Zbl 0588.76164 · doi:10.1016/0167-2789(86)90047-3
[40] Roubíček, T.: Nonlinear partial differential equations with applications (2nd edition), ISNM. International Series of Numerical Mathematics 153, Birkhäuser Verlag, Basel (2013) · Zbl 1270.35005
[41] Simon, J., Compact sets in the space \(L^p(0, T;B)\), Ann. Mat. Pura Appl. (4), 146, 65-96 (1987) · Zbl 0629.46031 · doi:10.1007/BF01762360
[42] Spalding, D.B.: Kolmogorov’s two-equation model of turbulence. Proc. R. Soc. Lond. Ser. A 434:1890 (1991) 211-216, Turbulence and stochastic processes: Kolmogorov’s ideas 50 years on · Zbl 0726.76052
[43] Vázquez, JL, The Porous Medium Equation. Mathematical Theory (2007), Oxford: Clarendon Press, Oxford · Zbl 1107.35003
[44] Wiegner, M., Global solutions to a class of strongly coupled parabolic systems, Math. Ann., 292, 4, 711-727 (1992) · Zbl 0801.35064 · doi:10.1007/BF01444644
[45] Wilcox, DC, Turbulence Modeling for CFD (1993), La Canada: DCW Industries, La Canada
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.