×

Performance studies of the fixed stress split algorithm for immiscible two-phase flow coupled with linear poromechanics. (English) Zbl 1484.76040

Summary: In this work, we measure the performance of the fixed stress split algorithm for the immiscible water-oil flow coupled with linear poromechanics. The two-phase flow equations are solved on general hexahedral elements using the multipoint flux mixed finite element method whereas the poromechanics equations are discretized using the conforming Galerkin method. We introduce a rigorous calculation of the update in poroelastic properties during the iterative solution of the coupled system equations. The effects of the coupling parameter on the performance of the fixed stress algorithm is demonstrated in two field studies: the Frio oil reservoir and the Cranfield injection site.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
76T06 Liquid-liquid two component flows
86A05 Hydrology, hydrography, oceanography

Software:

hypre
Full Text: DOI

References:

[1] Wick, T., Wollner, W.: Optimization with nonstationary, nonlinear monolithic fluid-structure interaction. International Journal for Numerical Methods in Engineering (2020)
[2] Mayr, M.; Noll, MH; Gee, MW, A hybrid interface preconditioner for monolithic fluid-structure interaction solvers, Adv. Model. Simul. Eng. Sci., 7, 1, 1-33 (2020) · doi:10.1186/s40323-020-00150-9
[3] Failer, L.; Richter, T., A parallel newton multigrid framework for monolithic fluid-structure interactions, J. Sci. Comput., 82, 2, 1-27 (2020) · Zbl 1514.76051 · doi:10.1007/s10915-019-01113-y
[4] Felippa, CA; Park, K-C; Farhat, C., Partitioned analysis of coupled mechanical systems, Comput. Methods Appl. Mech. Eng., 190, 24-25, 3247-3270 (2001) · Zbl 0985.76075 · doi:10.1016/S0045-7825(00)00391-1
[5] Camargo, J.T., White, J.A., Borja, R.I.: A macroelement stabilization for mixed finite element/finite volume discretizations of multiphase poromechanics. Computational Geosciences (2020) · Zbl 1460.65118
[6] Cremon, MA; Castelletto, N.; White, JA, Multi-stage preconditioners for thermal-compositional-reactive flow in porous media, J. Comput. Phys., 418, 109607 (2020) · Zbl 07506171 · doi:10.1016/j.jcp.2020.109607
[7] White, JA; Borja, RI, Block-preconditioned newton-krylov solvers for fully coupled flow and geomechanics, Comput. Geosci., 15, 4, 647 (2011) · Zbl 1367.76034 · doi:10.1007/s10596-011-9233-7
[8] White, JA; Castelletto, N.; Klevtsov, S.; Bui, QM; Osei-Kuffuor, D.; Tchelepi, HA, A two-stage preconditioner for multiphase poromechanics in reservoir simulation, Comput. Methods Appl. Mech. Eng., 357, 112575 (2019) · Zbl 1442.76118 · doi:10.1016/j.cma.2019.112575
[9] Frigo, M., Castelletto, N., Ferronato, M., White, J.A.: Efficient solvers for hybridized three-field mixed finite element coupled poromechanics. Computers & Mathematics with Applications (2020) · Zbl 1524.76451
[10] Castelletto, N.; White, JA; Tchelepi, HA, Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics, Int. J. Numer. Anal. Methods Geomech., 39, 14, 1593-1618 (2015) · doi:10.1002/nag.2400
[11] Franceschini, A., Castelletto, N., Ferronato, M.: Block preconditioning for fault/fracture mechanics saddle-point problems. Comput Methods Appl Mech Eng 344, 376-401 (2019) · Zbl 1440.74473
[12] Ferronato, M.; Franceschini, A.; Janna, C.; Castelletto, N.; Tchelepi, HA, A general preconditioning framework for coupled multiphysics problems with application to contact- and poro-mechanics, J. Comput. Phys., 398, 108887 (2019) · Zbl 1453.65065 · doi:10.1016/j.jcp.2019.108887
[13] Gaspar, FJ; Rodrigo, C., On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics, Comput. Methods Appl. Mech. Eng., 326, 526-540 (2017) · Zbl 1439.74413 · doi:10.1016/j.cma.2017.08.025
[14] Bui, QM; Osei-Kuffuor, D.; Castelletto, N.; White, JA, A scalable multigrid reduction framework for multiphase poromechanics of heterogeneous media, SIAM J. Sci. Comput., 42, B379-B396 (2020) · Zbl 1435.65153 · doi:10.1137/19M1256117
[15] Garipov, TT; Tomin, P.; Rin, R.; Voskov, DV; Tchelepi, HA, Unified thermo-compositional-mechanical framework for reservoir simulation, Comput. Geosci., 22, 4, 1039-1057 (2018) · Zbl 1401.86012 · doi:10.1007/s10596-018-9737-5
[16] Storvik, E., Both, J.W., Nordbotten, J.M., Radu, F.A.: The fixed-stress splitting scheme for Biot’s equations as a modified richardson iteration: Implications for optimal convergence (2019) · Zbl 1500.76053
[17] Correa, MR; Murad, MA, A new sequential method for three-phase immiscible flow in poroelastic media, J. Comput. Phys., 373, 493-532 (2018) · Zbl 1416.76101 · doi:10.1016/j.jcp.2018.06.069
[18] Jha, B., Juanes, R.: Coupled modeling of multiphase flow and fault poromechanics during geologic co2 storage. Energy Procedia 63:3313-3329. 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12 (2014)
[19] Jha, B.; Juanes, T., Coupled multiphase flow and poromechanics: A computational model of pore pressure effects on fault slip and earthquake triggering, Water Resour. Res., 50, 5, 3776-3808 (2014) · doi:10.1002/2013WR015175
[20] Choo, J., Lee, S.: Enriched galerkin finite elements for coupled poromechanics with local mass conservation. Comput. Methods Appl. Mech. Eng 341, 311-332 (2018) · Zbl 1440.74120
[21] Choo, J., White, J.A., Borja, R.I.: Hydromechanical modeling of unsaturated flow in double porosity media. Int. J. Geomech. 16(6), D4016002 (2016)
[22] Choo, J., Large deformation poromechanics with local mass conservation: An enriched galerkin finite element framework, Int. J. Numer. Methods Eng., 116, 1, 66-90 (2018) · Zbl 07865050 · doi:10.1002/nme.5915
[23] Xueying, L.; Wheeler, MF, Three-way coupling of multiphase flow and poromechanics in porous media, J. Comput. Phys., 401, 109053 (2020) · Zbl 1453.76080 · doi:10.1016/j.jcp.2019.109053
[24] Zhao, Y.; Choo, J., Stabilized material point methods for coupled large deformation and fluid flow in porous materials, Comput. Methods Appl. Mech. Eng., 362, 112742 (2020) · Zbl 1439.76163 · doi:10.1016/j.cma.2019.112742
[25] Kadeethum, T., Lee, S., Ballarind, F., Choo, J., Nick, H.M.: A locally conservative mixed finite element framework for coupled hydro-mechanical-chemical processes in heterogeneous porous media (2020)
[26] Dewers, T., Eichhubl, P., Ganis, B., Gomez, S., Heath, J., Jammoul, M., Kobos, P., Liu, R., Major, J., Matteo, E., Newell, P., Rinehart, A., Sobolik, S., Stormont, J., Taha, M.R., Wheeler, M., White, D.: Heterogeneity, pore pressure, and injectate chemistry: Control measures for geologic carbon storage. Int. J. Greenh. Gas Control 68, 203-215 (2018)
[27] Kim, J.; Tchelepi, HA; Juanes, R., Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics, SPE J., 16, 2, 249-262 (2011) · doi:10.2118/119084-PA
[28] Mikelić, A.; Wang, B.; Wheeler, MF, Numerical convergence study of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 18, 325-341 (2014) · Zbl 1386.76115 · doi:10.1007/s10596-013-9393-8
[29] Kim, J.; Tchelepi, HA; Juanes, R., Rigorous coupling of geomechanics and multiphase flow with strong capillarity, Soc. Pet. Eng. J., 18, 6, 1123-1139 (2013)
[30] Kim, J.: Sequential formulation of coupled geomechanics and multiphase flow. Ph.D. Dissertation, Stanford University (2010)
[31] Reverón, M.A.B., Kumar, K., Nordbotten, J.M., Radu, F.A.: Iterative solvers for Biot model under small and large deformations. Comput. Geosci., 1-13 (2020) · Zbl 1460.65117
[32] Almani, T., Kumar, K., Wheeler, M.F.: Convergence and error analysis of fully discrete iterative coupling schemes for coupling flow with geomechanics. Computational Geosciences (2017) · Zbl 1396.76047
[33] Both, JW; Borregales, M.; Nordbotten, JM; Kumar, K.; Radu, FA, Robust fixed stress splitting for Biot’s equations in heterogeneous media, Appl. Math. Lett., 68, 101-108 (2017) · Zbl 1383.74025 · doi:10.1016/j.aml.2016.12.019
[34] Ahmed, E.; Nordbotten, JM; Radu, FA, Adaptive asynchronous time-stepping, stopping criteria, and a posteriori error estimates for fixed-stress iterative schemes for coupled poromechanics problems, J. Comput. Appl. Math., 364, 112312 (2020) · Zbl 1524.76439 · doi:10.1016/j.cam.2019.06.028
[35] Both, J.W., Kumar, K., Nordbotten, J.M., Radu, F.A.: Anderson accelerated fixed-stress splitting schemes for consolidation of unsaturated porous media. Comput. Math. Appl. 77(6), 1479-1502. 7th International Conference on Advanced Computational Methods in Engineering (ACOMEN 2017) (2019) · Zbl 1442.65251
[36] Borregales, M., Kumar, K., Radu, F.A., Rodrigo, C., Gaspar, F.J.: A partially parallel-in-time fixed-stress splitting method for Biot’s consolidation model. Comput. Math. Appl. 77(6), 1466-1478. 7th International Conference on Advanced Computational Methods in Engineering (ACOMEN 2017) (2019) · Zbl 1442.65250
[37] Girault, V.; Xueying, L.; Wheeler, MF, A posteriori error estimates for Biot system using enriched galerkin for flow, Comput. Methods Appl. Mech. Eng., 369, 113185 (2020) · Zbl 1506.76075 · doi:10.1016/j.cma.2020.113185
[38] Jammoul, M., Ganis, B., Wheeler, M.F.: Effect of reservoir properties on interwell stress interference. In: 52nd US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association (2018)
[39] Jammoul, M., Ganis, B., Wheeler, M.: General semi-structured discretization for flow and geomechanics on diffusive fracture networks. In: SPE Reservoir Simulation Conference. Society of Petroleum Engineers (2019)
[40] Dana, S., Wheeler, M.F.: Design of convergence criterion for fixed stress split iterative scheme for small strain anisotropic poroelastoplasticity coupled with single phase flow. arXiv:1912.06476 (2019)
[41] Dana, S.: System of equations and staggered solution algorithm for immiscible two-phase flow coupled with linear poromechanics. arXiv:1912.04703 (2019)
[42] Dana, S.; Ita, J.; Wheeler, MF, The correspondence between Voigt and Reuss bounds and the decoupling constraint in a two-grid staggered algorithm for consolidation in heterogeneous porous media, Multiscale Model Simul., 18, 1, 221-239 (2020) · Zbl 1433.74093 · doi:10.1137/18M1187660
[43] Dana, A., Zhao, X., Jha, B.: Two-grid method on unstructured tetrahedra: Applying computational geometry to staggered solution of coupled flow and mechanics problems. arXiv:2102.04455 (2021)
[44] Dana, S.; Wheeler, MF, Convergence analysis of fixed stress split iterative scheme for anisotropic poroelasticity with tensor Biot parameter, Comput. Geosci., 22, 5, 1219-1230 (2018) · Zbl 1406.65084 · doi:10.1007/s10596-018-9748-2
[45] Dana, S.; Wheeler, MF, Convergence analysis of two-grid fixed stress split iterative scheme for coupled flow and deformation in heterogeneous poroelastic media, Comput. Methods Appl. Mech. Eng., 341, 788-806 (2018) · Zbl 1440.74122 · doi:10.1016/j.cma.2018.07.018
[46] Dana, S.: Addressing challenges in modeling of coupled flow and poromechanics in deep subsurface reservoirs. Phd thesis, The University of Texas at Austin (2018)
[47] Almani, T.; Kumar, K.; Dogru, A.; Singh, G.; Wheeler, MF, Convergence analysis of multirate fixed-stress split iterative schemes for coupling flow with geomechanics, Comput. Methods Appl. Mech. Eng., 311, 180-207 (2016) · Zbl 1439.74183 · doi:10.1016/j.cma.2016.07.036
[48] Dana, S.; Ganis, B.; Wheeler, MF, A multiscale fixed stress split iterative scheme for coupled flow and poromechanics in deep subsurface reservoirs, J. Comput. Phys., 352, 1-22 (2018) · Zbl 1375.76085 · doi:10.1016/j.jcp.2017.09.049
[49] Mikelić, A.; Wheeler, MF, Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 17, 3, 455-461 (2013) · Zbl 1392.35235 · doi:10.1007/s10596-012-9318-y
[50] da Silva Junior, D.A.: Multiphase flow and fault poromechanics: understanding earthquake triggering and seismic hazard. PhD thesis Massachusetts Institute of Technology (2020)
[51] Coussy, O.; Dangla, P.; Lassabatére, T.; Baroghel-Bouny, V., The equivalent pore pressure and the swelling and shrinkage of cement-based materials, Mater. Struct., 37, 15-20 (2004) · doi:10.1007/BF02481623
[52] Geertsma, J., The effect of fluid pressure decline on volumetric changes of porous rocks, SPE, 210, 331-340 (1957)
[53] Brown, RJS; Korringa, J., On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid, Geophysics, 40, 4, 608-616 (1975) · doi:10.1190/1.1440551
[54] Coussy, O.: Poromechanics, 2nd edn. Wiley (2004)
[55] Cao, H.: Development of techniques for general purpose simulators. Stanford University (2002)
[56] Saad, Y.; Schultz, MH, Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) · Zbl 0599.65018 · doi:10.1137/0907058
[57] Behie, G.A.: Practical considerations for incomplete factorization methods in reservoir simulation. In: SPE Reservoir Simulation Symposium. OnePetro (1983)
[58] Stüben, K., Algebraic multigrid (amg): experiences and comparisons, Appl Math Comput, 13, 3-4, 419-451 (1983) · Zbl 0533.65064
[59] Wallis, J.R., Kendall, R.P., Little, T.E.: Constrained residual acceleration of conjugate residual methods. In SPE Reservoir Simulation Symposium. OnePetro (1985)
[60] Falgout, R.D., Jones, J.E., Yang, U.M.: The design and implementation of hypre, a library of parallel high performance preconditioners. In: Numerical Solution of Partial Differential Equations on Parallel Computers, vol. 51, pp. 267-294. Springer (2006) · Zbl 1097.65059
[61] Juntunen, M., Wheeler, M.F.: Two-phase flow in complicated geometries. Comput. Geosci. 17(2), 239-247, 04 (2013) · Zbl 1382.76168
[62] Delshad, M.; Kong, X.; Tavakoli, R.; Hosseini, SA; Wheeler, MF, Modeling and simulation of carbon sequestration at cranfield incorporating new physical models, Int. J. Greenh. Gas Control, 18, 463-473 (2013) · doi:10.1016/j.ijggc.2013.03.019
[63] Brezzi, F.; Douglas, J.; Durán, R.; Fortin, M., Mixed finite elements for second order elliptic problems in three variables, Numer. Math., 51, 2, 237-250 (1987) · Zbl 0631.65107 · doi:10.1007/BF01396752
[64] Ingram, R.; Wheeler, MF; Yotov, I., A multipoint flux mixed finite element method on hexahedra, SIAM J. Numer. Anal., 48, 4, 1281-1312 (2010) · Zbl 1228.65225 · doi:10.1137/090766176
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.