×

Matrix elements of unitary group generators in many-fermion correlation problem. II: Graphical methods of spin algebras. (English) Zbl 1466.81148

Summary: [For parts I, and III see the author, ibid. 59, No. 1, 1–36 (2021; Zbl 1466.81147), and 59, No. 1, 72–118 (2021; Zbl 1466.81149) ] This second instalment continues our survey inter-relating various approaches to the evaluation of matrix elements (MEs) of the unitary group generators, their products, and spin-orbital \(U(2n)\) generators, in the basis of the electronic Gel’fand-Tsetlin (G-T) [or Gel’fand-Paldus (G-P) or P-] states spanning the carrier spaces of the two-column irreducible representations (irreps) of the unitary group approach (UGA) to the many-electron correlation problem. Exploiting an intimate relationship between the \(U(n)\), \(\mathcal{S}_N\), and SU(2) groups we rely here on the SU(2) formalism within the confines of UGA rather than on an earlier approach relying on the permutation group \(\mathcal{S}_N\). The key is a close relationship between the P-states of UGA and the Yamanouchi-Kotani (Y-K) states of SU(2) that differ only in a phase. This enables one to exploit the powerful graphical techniques of spin (or angular momentum) algebras as first developed by Jucys. We show the usefulness and power of these techniques in the problem of UGA ME evaluation which, moreover, leads automatically to their segmentation, first derived for single generators by Shavitt and for generator products by Boyle and Paldus. We also show how the same technique can be successfully employed for MEs of spin-dependent \(U(2n)\) generators in the UGA P-basis.

MSC:

81V70 Many-body theory; quantum Hall effect
81V74 Fermionic systems in quantum theory
81R25 Spinor and twistor methods applied to problems in quantum theory
81P16 Quantum state spaces, operational and probabilistic concepts
20F05 Generators, relations, and presentations of groups
22D10 Unitary representations of locally compact groups
22E70 Applications of Lie groups to the sciences; explicit representations
Full Text: DOI

References:

[1] Paldus, J., Matrix elements of unitary group generators in many‑fermion correlation problem. I. tensorial approaches, J. Math. Chem. (2020) · Zbl 1466.81147 · doi:10.1007/s10910-020-01172-9
[2] Gould, MD; Chandler, GS, Int. J. Quantum Chem., 25, 553 (1984)
[3] Gould, MD; Chandler, GS, Int. J. Quantum Chem., 25, 603 (1984)
[4] Gould, MD; Chandler, GS, Int. J. Quantum Chem., 25, 1089 (1984)
[5] Gould, MD; Chandler, GS, Int. J. Quantum Chem., 27, 787(E) (1985)
[6] Dobrautz, W.; Smart, SD; Alavi, A., J. Chem. Phys., 151, 094104 (2019)
[7] Manni, GL; Dobrautz, W.; Alavi, A., J. Chem. Theory Comput., 16, 2202 (2020)
[8] Paldus, J., J. Chem. Phys., 61, 5321 (1974)
[9] Paldus, J., Int. J. Quantum. Chem., S9, 165 (1975)
[10] J. Paldus, in Theoretical Chemistry: Advances and Perspectives, vol. 2, ed. by H. Eyring, D.J. Henderson (Academic Press, New York, 1976), pp. 131-290
[11] Shavitt, I., Int. J. Quantum Chem., S11, 131 (1977)
[12] Shavitt, I., Int. J. Quantum Chem., S12, 5 (1978)
[13] J. Paldus, in Mathematical Frontiers in Computational Chemical Physics, IMA Series, vol. 15, ed. by D.G. Truhlar (Springer, Berlin, 1988), pp. 262-299
[14] I. Shavitt, in Mathematical Frontiers in Computational Chemical Physics, IMA Series, vol. 15, ed. by D.G. Truhlar (Springer, Berlin, 1988), pp. 300-349
[15] Biedenharn, LC; Louck, JD, The Racah-Wigner Algebra in Quantum Theory (1981), Reading: Addison-Wesley, Reading · Zbl 0474.00024
[16] Louck, JD, Am. J. Phys., 38, 3 (1970)
[17] J. Schwinger, in Quantum Theory and Angular Momentum, ed. by L.C. Biedenharn, H. van Dam (Academic Press, New York, 1965), pp. 229-279. [this ingenious paper was written at Los Alamos during the WWII but due to security problems could only be published 20 years later; private communication by L. C. B.]
[18] Li, X.; Paldus, J., J. Math. Chem., 4, 295 (1990)
[19] Li, X.; Paldus, J., J. Math. Chem., 13, 273 (1993)
[20] Li, X.; Paldus, J., J. Math. Chem., 14, 325 (1993)
[21] Li, X.; Paldus, J., Theor. Chem. Acc., 133, 1467 (2014)
[22] A.P. Jucys, I.B. Levinson, V.V. Vanagas, Mathematical Apparatus of the Theory of Angular Momentum (Institute of Physics and Mathematics of the Academy of Sciences of the Lithuanian S.S.R., Mintis, Vilnius, 1960, in Russian). English translations by Israel Program for Scientific Translations, Jerusalem, 1962, and Gordon and Breach, New York, 1964
[23] A.P. Jucys, A.A. Bandzaitis, The Theory of Angular Momentum in Quantum Mechanics (Institute of Physics and Mathematics of the Academy of Sciences of the Lithuanian S.S.R., Mintis, Vilnius, 1964, in Russian)
[24] El Baz, E.; Castel, B., Graphical Methods of Spin Algebras in Atomic, Nuclear, and Particle Physics (1972), New York: Marcel Dekker, New York
[25] Wormer, PES; Paldus, J., Adv. Quantum Chem., 51, 59 (2006)
[26] Yamanouchi, T., Proc. Phys. Math. Soc. Jpn., 19, 436 (1937) · JFM 63.0079.03
[27] Kotani, M.; Amemyia, A.; Ishiguro, E.; Kimura, T., Tables of Molecular Integrals, 5 (1963), Tokyo: Maruzen Co., Tokyo
[28] Pauncz, R., The Symmetric Group in Quantum Chemistry (1995), Boca Raton: CRC Press, Boca Raton · Zbl 0855.20015
[29] Paldus, J.; Boyle, MJ, Phys. Scr., 21, 295 (1980)
[30] Gouyet, JF; Schranner, R.; Seligman, TH, J. Phys. A Math. Gen., 8, 285 (1975)
[31] Drake, GWF; Schlesinger, M., Phys. Rev. A, 15, 1990 (1977)
[32] F. Sasaki, Representation of the generators of the unitary group, in Progress Report XI, Research Group on Atoms and Molecules (Dept. of Physics, Ochanomizu Uni., Tokyo, Japan, 1978), p. 1
[33] Sasaki, F., Int. J. Quantum Chem., 8, 605 (1974)
[34] Tolmachev, VV, Adv. Chem. Phys., 14, 471 (1969)
[35] Paldus, J.; Adams, BG; Čížek, J., Int. J. Quantum Chem., 11, 813 (1977)
[36] Adams, BG; Paldus, J.; Čížek, J., Int. J. Quantum Chem., 11, 849 (1977)
[37] Paldus, J., J. Chem. Phys., 67, 303 (1977)
[38] Adams, GG; Paldus, J., Phys. Rev. A, 20, 1 (1979)
[39] Adams, GG; Paldus, J., Phys. Rev. A, 24, 2302 (1981)
[40] Paldus, J.; Wormer, PES, Int. J. Quantum Chem., 16, 1321 (1979)
[41] Paldus, J.; Wormer, PES, Phys. Rev. A, 18, 827 (1978)
[42] Wormer, PES; Paldus, J., Int. J. Quantum Chem., 18, 841 (1980)
[43] M. Moshinsky, in Many-Body Problems and Other Selected Topics in Theoretical Physics, ed. by T.A. Brody, G. Jacob (Gordon and Breach, New York, 1966), pp. 289-377 (reissued by Gordon and Breach in 1968 as a separate monograph entitled: Group Theory and the Many-Body Problem)
[44] J. Paldus, in Group Theoretical Methods in Physics; Proceedings of the 7th International Colloquium and Integrative Conference on Group Thcory and Mathematical Physics, Austin, Texas, ed. by W. Beiglboeck, A. Böhm, E. Takasugi (Springer, Heidelberg, 1979), p. 51
[45] Paldus, J., Phys. Rev. A, 14, 1620 (1976)
[46] Paldus, J.; Čížek, J., Adv. Quantum Chem., 9, 105 (1975)
[47] J. Paldus, Nijmegen Lectures.pdf. (University of Nijmegen, Nijmegen, Holland, 1981). http://www.math.uwaterloo.ca/ paldus/resources.html
[48] As pointed out by Lucht and Gould [49], what we refer to as a G-T convention would be more properly called Baird-Biedenharn convention [50]
[49] Lucht, MW; Gould, MD, J. Chem. Phys., 103, 5590 (1995)
[50] Baird, GE; Biedenharn, LC, J. Math. Phys., 4, 1449 (1963)
[51] J. Paldus, in Relativistic and Electron Correlation Effects in Molecules and Solids, NATO ASI Series, Series B: Physics, vol. 318, ed. by G.L. Malli (Plenum, New York, 1994), pp. 207-282
[52] Paldus, J.; Jeziorski, B., Theor. Chim. Acta, 73, 81 (1988)
[53] Kutzelnigg, W., J. Chem. Phys., 82, 4166 (1985)
[54] Gould, MD; Paldus, J.; Chandler, GS, J. Chem. Phys., 93, 4142 (1990)
[55] Paldus, J.; Boyle, MJ, Phys. Rev. A, 22, 2299 (1980)
[56] Boyle, MJ; Paldus, J., Phys. Rev. A, 22, 2316 (1980)
[57] Flores, J.; Moshinsky, M., Nucl. Phys. A, 93, 81 (1967)
[58] Gould, MD; Chandler, GS, Int. J. Quantum Chem., 25, 663 (1984)
[59] Gould, MD; Chandler, GS, Int. J. Quantum Chem., 27, 878 (1985)
[60] Gould, MD; Paldus, J., J. Chem. Phys., 92, 7394 (1990)
[61] Kent, RD; Schlesinger, M., Phys. Rev. A, 42, 1155 (1990)
[62] Kent, RD; Schlesinger, M.; Shavitt, I., Int. J. Quantum Chem., 41, 89 (1992)
[63] Gould, MD; Battle, JS, J. Chem. Phys., 99, 5961 (1993)
[64] Battle, JS; Gould, MD, Chem. Phys. Lett., 201, 284 (1993)
[65] Battle, JS; Gould, MD, J. Chem. Phys., 104, 5112 (1996)
[66] Battle, JS; Gould, MD, Int. J. Quantum Chem., 66, 345 (1998)
[67] Battle, JS; Gould, MD, Int. J. Quantum Chem., 66, 365 (1998)
[68] Yabushita, S.; Zhang, Z.; Pitzer, RM, J. Phys. Chem. A, 103, 5791 (1999)
[69] Li, X.; Paldus, J., J. Math. Chem., 133, 1467 (2014)
[70] Green, HS, J. Math. Phys., 12, 2106 (1971) · Zbl 0229.17008
[71] Gould, MD, J. Math. Phys., 21, 444 (1980) · Zbl 0445.22010
[72] Gould, MD, J. Math. Phys., 22, 15 (1981) · Zbl 0505.22019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.