×

Long-time asymptotics for Toda shock waves in the modulation region. (English) Zbl 1537.37063

The long-time asymptotics of Toda shock waves is studied. Proofs of asymptotic expansions of solutions are given, and the influence of resonances and eigenvalues on the leading terms of asymptotics is analyzed.

MSC:

37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37J38 Relations of finite-dimensional Hamiltonian and Lagrangian systems with algebraic geometry, complex analysis, special functions
34K25 Asymptotic theory of functional-differential equations
34D05 Asymptotic properties of solutions to ordinary differential equations
34M50 Inverse problems (Riemann-Hilbert, inverse differential Galois, etc.) for ordinary differential equations in the complex domain
34M30 Asymptotics and summation methods for ordinary differential equations in the complex domain

References:

[1] K. Andreiev, I. Egorova, T.L. Lange, and G. Teschl, Rarefaction waves of the Korteweg-de Vries equation via nonlinear steepest descent, J. Differential Equations 261 (2016), 5371-5410. https://doi.org/10.1016/j.jde.2016.08.009 · Zbl 1377.37107 · doi:10.1016/j.jde.2016.08.009
[2] M. Bleher, Lectures on Random Matrix Models: The Riemann-Hilbert Approach, Random Matrices, Random Processes and Integrable Systems, (Ed. J. Harnad), CRM Series in Mathematical Physics, Springer, New York, 2001,251-349. https://doi.org/10.1007/978-1-4419-9514-8_4 · Zbl 1252.15040 · doi:10.1007/978-1-4419-9514-8_4
[3] A.M. Bloch and Y. Kodama, The Whitham equation and shocks in the Toda lattice, Proceedings of the NATO Advanced Study Workshop on Singular Limits of Dispersive Waves held in Lyons, July 1991, Plenum Press, New York, 1994. https://doi.org/10.1007/978-1-4615-2474-8_1 · Zbl 0849.35116 · doi:10.1007/978-1-4615-2474-8_1
[4] A.M. Bloch and Y. Kodama, Dispersive regularization of the Whitham equation for the Toda lattice, SIAM J. Appl. Math. 52 (1992), 909-928. https://doi.org/10.1137/0152052 · Zbl 0757.34014 · doi:10.1137/0152052
[5] A. Boutet de Monvel, I. Egorova, and E. Khruslov, Soliton asymptotics of the Cauchy problem solution for the Toda lattice, Inverse Problems 13 (1997), 223-237. https://doi.org/10.1088/0266-5611/13/2/003 · Zbl 0872.35107 · doi:10.1088/0266-5611/13/2/003
[6] A. Boutet de Monvel and I. Egorova, The Toda lattice with step-like initial data. Soliton asymptotics, Inverse Problems 16 (2000), 955-977. https://doi.org/10.1088/0266-5611/16/4/306 · Zbl 0958.35132 · doi:10.1088/0266-5611/16/4/306
[7] P. Deift, Some open problems in random matrix theory and the theory of integrable systems. II, SIGMA 13 (2017), 016. https://doi.org/10.3842/SIGMA.2017.016 · Zbl 1375.37160 · doi:10.3842/SIGMA.2017.016
[8] P. Deift, S. Kamvissis, T. Kriecherbauer, and X. Zhou, The Toda rarefaction problem, Comm. Pure Appl. Math. 49 (1996), 35-83. https://doi.org/10.1002/(SICI)1097-0312(199601)49:1 · Zbl 0857.34025 · doi:10.1002/(SICI)1097-0312(199601)49:1<35::AID-CPA2>3.0.CO;2-8
[9] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou, Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math. 52 (1999), 1335-1425. https://doi.org/10.1002/(SICI)1097-0312(199911)52:11 · doi:10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO;2-1
[10] P. Deift and X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems, Ann. of Math. (2) 137 (1993), 295-368. https://doi.org/10.2307/2946540 · Zbl 0771.35042 · doi:10.2307/2946540
[11] P. Deift, S. Venakides, and X. Zhou, The collisionless shock region for the long time behavior of solutions of the KdV equation, Comm. Pure and Appl. Math. 47 (1994), 199-206. https://doi.org/10.1002/cpa.3160470204 · Zbl 0797.35143 · doi:10.1002/cpa.3160470204
[12] B.A. Dubrovin, Theta functions and nonlinear equations, Russian Math. Surveys 36 (1981), 11-92. https://doi.org/10.1070/RM1981v036n02ABEH002596 · Zbl 0549.58038 · doi:10.1070/RM1981v036n02ABEH002596
[13] I. Egorova and Z. Gladka, V. Kotlyarov, and G. Teschl, Long-time asymptotics for the Korteweg-de Vries equation with steplike initial data, Nonlinearity 26 (2013), 1839-1864. https://doi.org/10.1088/0951-7715/26/7/1839 · Zbl 1320.35308 · doi:10.1088/0951-7715/26/7/1839
[14] I. Egorova and J. Michor, How discrete spectrum and resonances influence the asymptotics of the Toda shock wave, SIGMA 17 (2021), 045. https://doi.org/10.3842/SIGMA.2021.045 · Zbl 1481.37087 · doi:10.3842/SIGMA.2021.045
[15] I. Egorova, J. Michor, and G. Teschl, Scattering theory for Jacobi operators with general steplike quasi-periodic background, J. Math. Phys. Anal. Geom. 4 (2008), 33-62. · Zbl 1177.47038
[16] I. Egorova, J. Michor, and G. Teschl, Inverse scattering transform for the Toda hierarchy with steplike finite-gap backgrounds, J. Math. Phys. 50 (2009), 103522. https://doi.org/10.1063/1.3239507 · Zbl 1283.37067 · doi:10.1063/1.3239507
[17] I. Egorova, J. Michor, and G. Teschl, Scattering theory with finite-gap backgrounds: transformation operators and characteristic properties of scattering data, Math. Phys. Anal. Geom. 16 (2013), 111-136. https://doi.org/10.1007/s11040-012-9121-y · Zbl 1279.47045 · doi:10.1007/s11040-012-9121-y
[18] I. Egorova, J. Michor, and G. Teschl, Long-time asymptotics for the Toda shock problem: non-overlapping spectra, J. Math. Phys. Anal. Geom. 14 (2018), 406-451. https://doi.org/10.15407/mag14.04.406 · Zbl 1422.37052 · doi:10.15407/mag14.04.406
[19] I. Egorova, M. Piorkowski, and G. Teschl, On Vector and Matrix Riemann-Hilbert problems for KdV shock waves, preprint, https://arxiv.org/abs/1907.09792.
[20] M. Girotti, T. Grava, R. Jenkins, and K.D.T.-R. McLaughlin, Rigorous asymptotics of a KdV soliton gas, Comm. Math. Phys. 384 (2021), 733-784. https://doi.org/10.1007/s00220-021-03942-1 · Zbl 1470.37094 · doi:10.1007/s00220-021-03942-1
[21] F. Gesztesy and G. Teschl, Commutation methods for Jacobi operators , J. Differential Equations 128 (1996), 252-299. https://doi.org/10.1006/jdeq.1996.0095 · Zbl 0854.34079 · doi:10.1006/jdeq.1996.0095
[22] K. Grunert and G. Teschl, Long-time asymptotics for the Korteweg-de Vries equation via nonlinear steepest descent, Math. Phys. Anal. Geom. 12 (2009), 287-324. https://doi.org/10.1007/s11040-009-9062-2 · Zbl 1179.37098 · doi:10.1007/s11040-009-9062-2
[23] A. Its, Large N-asymptotics in random matrices. Random Matrices, Random Processes and Integrable Systems, CRM Series in Mathematical Physics, Springer, New York, 2011. https://doi.org/10.1007/978-1-4419-9514-8_5 · Zbl 1248.15030 · doi:10.1007/978-1-4419-9514-8_5
[24] V.P. Kotlyarov, A.M. Minakov, Riemann-Hilbert problem to the modified Korteweg-de Vries equation: Long-time dynamics of the step-like initial data, J. Math. Phys. 51 (2010), 093506. https://doi.org/10.1063/1.3470505 · Zbl 1309.35050 · doi:10.1063/1.3470505
[25] S. Kamvissis, On the Toda shock problem, Phys. D, 65 (1993), 242-256. https://doi.org/10.1016/0167-2789(93)90161-S · Zbl 0771.58026 · doi:10.1016/0167-2789(93)90161-S
[26] H. Krüger and G. Teschl, Long-time asymptotics for the Toda lattice in the soliton region, Math. Z. 262 (2009), 585-602. https://doi.org/10.1007/s00209-008-0391-9 · Zbl 1198.37104 · doi:10.1007/s00209-008-0391-9
[27] H. Krüger and G. Teschl, Long-time asymptotics of the Toda lattice for decaying initial data revisited, Rev. Math. Phys. 21 (2009), 61-109. https://doi.org/10.1142/S0129055X0900358X · Zbl 1173.37057 · doi:10.1142/S0129055X0900358X
[28] J. Lenells, Matrix Riemann-Hilbert problems with jumps across Carleson contours, Monatsh. Math. 186 (2018), 111-152. https://doi.org/10.1007/s00605-017-1019-0 · Zbl 1397.35163 · doi:10.1007/s00605-017-1019-0
[29] J. Michor, Wave phenomena of the Toda lattice with steplike initial data , Phys. Lett. A 380 (2016), 1110-1116. https://doi.org/10.1016/j.physleta.2016.01.033 · Zbl 1361.76015 · doi:10.1016/j.physleta.2016.01.033
[30] A. Minakov, Riemann-Hilbert problem for Camassa-Holm equation with step-like initial data, J. Math. Anal. Appl. 429 · Zbl 1321.35204 · doi:10.1016/j.jmaa.2015.03.059
[31] A. Minakov, On the solution of the Zakharov-Shabat system, which arises in the analysis of the largest real eigenvalue in the real Ginibre ensemble, preprint, https://arxiv.org/abs/1905.03369. · Zbl 1241.35182
[32] N.I. Muskhelishvili, Singular Integral Equations, P. Noordhoff Ltd., Groningen, 1953. · Zbl 0051.33203
[33] M. Piorkowski, Parametrix problem for the Korteweg-de Vries equation with steplike initial data, preprint, https://arxiv.org/abs/1908.11340. · Zbl 1528.35152
[34] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Math. Surv. and Mon., 72 , Amer. Math. Soc., Rhode Island, 2000. https://doi.org/10.1090/surv/072 · Zbl 1056.39029 · doi:10.1090/surv/072
[35] M. Toda, Theory of Nonlinear Lattices, Springer, Berlin, 1989. https://doi.org/10.1007/978-3-642-83219-2 · Zbl 0694.70001 · doi:10.1007/978-3-642-83219-2
[36] S. Venakides, P. Deift, and R. Oba, The Toda shock problem, Comm. Pure Appl. Math. 44 (1991), 1171-1242. https://doi.org/10.1002/cpa.3160440823 · Zbl 0749.35054 · doi:10.1002/cpa.3160440823
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.