×

\(\mathbb{Z}_4\mathbb{Z}_4 [u]\)-additive cyclic and constacyclic codes. (English) Zbl 1479.94366

Summary: We study mixed alphabet cyclic and constacyclic codes over the two alphabets \(\mathbb{Z}_4\), the ring of integers modulo \(4\), and its quadratic extension \(\mathbb{Z}_4 [u] = \mathbb{Z}_4 +u\mathbb{Z}_4, u^2 = 0\). Their generator polynomials and minimal spanning sets are obtained. Further, under new Gray maps, we find cyclic, quasi-cyclic codes over \(\mathbb{Z}_4\) as the Gray images of both \(\lambda\)-constacyclic and skew \(\lambda\)-constacyclic codes over \(\mathbb{Z}_4 [u]\). Moreover, it is proved that the Gray images of \(\mathbb{Z}_4 \mathbb{Z}_4 [u]\)-additive constacyclic and skew \(\mathbb{Z}_4 \mathbb{Z}_4 [u]\)-additive constacyclic codes are generalized quasi-cyclic codes over \(\mathbb{Z}_4\). Finally, several new quaternary linear codes are obtained from these cyclic and constacyclic codes.

MSC:

94B15 Cyclic codes
94B05 Linear codes (general theory)
94B60 Other types of codes
Full Text: DOI

References:

[1] T. Abualrub; I. Siap, Reversible cyclic codes over \(\mathbb{Z}_4 \), Australas. J. Comb., 38, 195-205 (2007) · Zbl 1255.94084
[2] T. Abualrub; I. Siap, Cyclic codes over the rings \(\mathbb{Z}_2 +u\mathbb{Z}_2\) and \(\mathbb{Z}_2 +u\mathbb{Z}_2+u^2\mathbb{Z}_2 \), Des. Codes Cryptogr., 42, 273-287 (2007) · Zbl 1143.94020 · doi:10.1007/s10623-006-9034-5
[3] T. Abualrub; I. Siap; N. Aydin, \( \mathbb{Z}_2\mathbb{Z}_4 \)-Additive cyclic codes, IEEE Trans. Inform. Theory, 60, 1508-1514 (2014) · Zbl 1360.94398 · doi:10.1109/TIT.2014.2299791
[4] T. Asamov and N. Aydin, Table of Z4 codes, Online available at http://http://www.asamov.com/Z4Codes. Accessed on 2019-12-12.
[5] N. Aydin; H. Halilovic, A generalization of quasi-twisted codes: Multi-twisted codes, Finite Fields Appl., 45, 96-106 (2017) · Zbl 1392.94939 · doi:10.1016/j.ffa.2016.12.002
[6] I. Aydogdu; T. Abualrub; I. Siap, On \(\mathbb{Z}_2\mathbb{Z}_2[u]\)-additive codes, Int. J. Comput. Math., 92, 1806-1814 (2015) · Zbl 1358.94103 · doi:10.1080/00207160.2013.859854
[7] I. Aydogdu; T. Abualrub; I. Siap, The \(\mathbb{Z}_2\mathbb{Z}_2[u]\)-cyclic and constacyclic codes, IEEE Trans. Inform. Theory, 63, 4883-4893 (2017) · Zbl 1372.94459 · doi:10.1109/TIT.2016.2632163
[8] I. Aydogdu; T. Abualrub; I. Siap, On the structure of \(\mathbb{Z}_2\mathbb{Z}_2[u^3]\)-linear and cyclic codes, Finite Fields Appl., 48, 241-260 (2017) · Zbl 1403.94103 · doi:10.1016/j.ffa.2017.03.001
[9] I. Aydogdu; I. Siap, The structure of \(\mathbb{Z}_2\mathbb{Z}_{2^s} \)-additive codes: Bounds on the minimum distance, Appl. Math. Inf. Sci., 7, 2271-2278 (2013) · doi:10.12785/amis/070617
[10] I. Aydogdu; I. Siap, On \(\mathbb{Z}_{p^r}\mathbb{Z}_{p^s} \)-additive codes, Linear Multilinear Algebra, 63, 2089-2102 (2015) · Zbl 1352.94078 · doi:10.1080/03081087.2014.952728
[11] I. Aydogdu and F. Gursoy, On \(\mathbb{Z}_2\mathbb{Z}_4[\xi]\)-Skew cyclic codes, preprint (2017), arXiv: 1711.01816v1.
[12] N. BenBelkacem, F. M. Ezerman, T. Abualrub and A. Batoul, Skew Cyclic Codes over \(\mathbb{F}_4R, \), preprint (2017), arXiv: 1812.10692. · Zbl 1483.94063
[13] J. Bierbrauer, The theory of cyclic codes and a generalization to additive codes, Des. Codes Cryptogr, 25, 189-206 (2002) · Zbl 1005.94025 · doi:10.1023/A:1013808515797
[14] J. Borges; C. Fernandez-Cordoba; J. Pujol; J. Rifa, \( \mathbb{Z}_2\mathbb{Z}_4 \)-linear codes: Geneartor matrices and duality, Des. Codes Cryptogr., 54, 167-179 (2010) · Zbl 1185.94092 · doi:10.1007/s10623-009-9316-9
[15] J. Borges; C. Fernandez-Cordoba; R. Ten-Valls, \( \mathbb{Z}_2\mathbb{Z}_4 \)-additive cyclic codes, generator polynomials and dual codes, IEEE Trans. Inform. Theory, 62, 6348-6354 (2016) · Zbl 1359.94758 · doi:10.1109/TIT.2016.2611528
[16] J. Borges; C. Fernandez-Cordoba, A characterization of \(\mathbb{Z}_2\mathbb{Z}_2[u]\)-linear codes, Des. Codes Cryptogr., 86, 1377-1389 (2018) · Zbl 1420.94103 · doi:10.1007/s10623-017-0401-1
[17] D. Boucher; P. Solé; F. Ulmer, Skew constacyclic codes over Galois rings, Adv. Math. Commun., 2, 273-292 (2008) · Zbl 1207.94085 · doi:10.3934/amc.2008.2.273
[18] P. Delsarte, An Algebraic Approach to Association Schemes of Coding Theory, Philips Res. Rep., Supplement, 1973. · Zbl 1075.05606
[19] P. Delsarte; V. I. Levenshtein, Association schemes and coding theory, IEEE Trans. Inform. Theory, 44, 2477-2504 (1998) · Zbl 0946.05086 · doi:10.1109/18.720545
[20] M. Esmaeilia; S. Yari, Generalized quasi-cyclic codes: Structrural properties and code construction, Algebra Engrg. Comm. Commput., 20, 159-173 (2009) · Zbl 1173.94453 · doi:10.1007/s00200-009-0095-3
[21] C. Fernandez-Cordoba; J. Pujol; M. Villanueva, \( \mathbb{Z}_2\mathbb{Z}_4\)-linear codes: Rank and kernel, Des. Codes Cryptogr., 56, 43-59 (2010) · Zbl 1193.94075 · doi:10.1007/s10623-009-9340-9
[22] H. Islam and O. Prakash, On \(\mathbb{Z}_p\mathbb{Z}_p[u, v]\)-additive cyclic and constacyclic codes, preprint (2019), arXiv: 1905.06686v1.
[23] P. Li, W. Dai and X. Kai, On \(\mathbb{Z}_2\mathbb{Z}_2[u]-(1+u)\)-additive constacyclic
[24] B. R. McDonald, Finite Rings with Identity, Marcel Dekker Inc., New York, 1974. · Zbl 0294.16012
[25] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977. · Zbl 0369.94008
[26] H. Rifa-Pous; J. Rifa; L. Ronquillo, \( \mathbb{Z}_2\mathbb{Z}_4\)-additive perfect codes in steganography, Adv. Math. Commun., 5, 425-433 (2011) · Zbl 1228.68027 · doi:10.3934/amc.2011.5.425
[27] A. Sharma; M. Bhaintwal, A class of skew-constacyclic codes over \(\mathbb{Z}_4+u\mathbb{Z}_4\), Int. J. Inf. Coding Theory, 4, 289-303 (2017) · Zbl 1407.94186 · doi:10.1504/IJICOT.2017.086918
[28] A. Sharma; M. Bhaintwal, \( \mathbb{F}_3R\)-skew cyclic codes, Int. J. Inf. Coding Theory, 3, 234-251 (2016) · Zbl 1403.94120 · doi:10.1504/IJICOT.2016.076967
[29] M. Shi; R. Wu; D. S. Krotov, On \(\mathbb{Z}_p\mathbb{Z}_{p^k} \)-additive codes and their duality, IEEE Trans. Inf. Theory, 65, 3842-3847 (2018) · Zbl 1432.94177 · doi:10.1109/TIT.2018.2883759
[30] B. Srinivasulu and B. Maheshanand, The \(\mathbb{Z}_2(\mathbb{Z}_2+u\mathbb{Z}_2)\)-additive cyclic codes and their duals, Discrete Math. Algorithm. Appl., 8 (2016), 1650027, 19 pp. · Zbl 1348.94088
[31] T. Yao; S. Zhu, \( \mathbb{Z}_p\mathbb{Z}_{p^s} \)-additive cyclic codes are asymptotically good, Cryptogr. Commun., 12, 253-264 (2020) · Zbl 1434.94094 · doi:10.1007/s12095-019-00397-z
[32] T. Yao, S. Zhu and X. Kai, Asymptotically good \(\mathbb{Z}_{p^r}\mathbb{Z}_{p^s} \)-additive cyclic codes, Finite Fields Appl., 63 (2020), 101633, 15 pp. · Zbl 1457.94245
[33] B. Yildiz; N. Aydin, On cyclic codes over \(\mathbb{ Z}_4+u\mathbb{Z}_4\) and their \(\mathbb{Z}_4\)-images, Int. J. Inf. Coding Theory, 2, 226-237 (2014) · Zbl 1358.94100 · doi:10.1504/IJICOT.2014.066107
[34] Félix Ulmer’s publication list, http://felixulmer.epizy.com/fu_papers.html.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.