×

High-order contrast bounds for piezoelectric constants of two-phase fibrous composites. (English) Zbl 1538.74122

Summary: The constructive theory of analytical higher-order contrast bounds for the effective constants of dispersed conducting and piezoelectric fibrous composites is developed. The lower-order bounds, e.g., Wiener and Hashin-Shtrikman bounds, are universal for composites but do not take into account interactions among inclusions corresponding to their location. To study the variety of dispersed random composites, we use computationally effective structural sums directly relating the location of inclusions to the effective constants. The present paper is the first report where the structural sums are applied to higher-order contrast bounds instead of the virtually impossible in computation multipoint correlation functions. We concentrate our attention on two-phase conducting fibrous composites. Rylko’s matrix decomposition is used for the higher-order contrast bounds to extend the obtained analytical bounds to piezoelectric fibrous composites. The supplementary materials contain the results of numerical-symbolic computations, the long analytical formulas for the effective constants and bounds up to \(O(f^{17})\), where \(f\) stands for concentration.

MSC:

74Q20 Bounds on effective properties in solid mechanics
74E30 Composite and mixture properties
74F15 Electromagnetic effects in solid mechanics
Full Text: DOI

References:

[1] Akhiezer, N. I., Elements of the Theory of Elliptic Functions, , American Mathematical Society, Providence, RI, 1990. · Zbl 0694.33001
[2] Alali, B. and Lipton, R., Optimal lower bounds on local stress inside random media, SIAM J. Appl. Math., 70 (2009), pp. 1260-1282, doi:10.1137/080744967. · Zbl 1197.35286
[3] Andrianov, I. and Mityushev, V., Exact and “exact” formulae in the theory of composites, in Modern Problems in Applied Analysis, Springer, Cham, 2018, pp. 15-34. · Zbl 1405.74008
[4] Andrianov, I. I., Awrejcewicz, J., Starushenko, G. A., and Gabrinets, V. A., Refinement of the Maxwell formula for a composite reinforced by circular cross-section fibres. Part II: Using Padé approximants, Acta Mech., 231 (2020), pp. 5145-5157. · Zbl 1457.74168
[5] Andrianov, I. I., Awrejcewicz, J., Starushenko, G. A., and Gabrinets, V. A., Refinement of the Maxwell formula for composite reinforced by circular cross-section fibers. Part I: Using the Schwarz alternating method, Acta Mech., 231 (2020), pp. 4971-4990. · Zbl 1457.74167
[6] Beran, M., Statistical Continuum Theories, Interscience, New York, 1968. · Zbl 0162.58902
[7] Bergman, D. J., The dielectric constant of a composite material-A problem in classical physics, Phys. Rep., 43 (1978), pp. 377-407.
[8] Bergman, D. J., Bounds for the complex dielectric constant of a two-component composite material, Phys. Rev. B, 23 (1981), pp. 3058-3065.
[9] Berlyand, L. and Mityushev, V., Generalized clausius-mossotti formula for random composite with circular fibers, J. Statist. Phys., 102 (2001), pp. 115-145. · Zbl 1072.82586
[10] Bisegna, P.R. Luciano, Variational bounds for the overall properties of piezoelectric composites, J. Mech. Phys. Solids, 44 (1996), pp. 583-602. · Zbl 1054.74705
[11] Cherkaev, A., Variational Methods for Structural Optimization, , Springer-Verlag, New York, 2012. · Zbl 0956.74001
[12] Cherkaev, A. and Pruss, A. D., Effective conductivity of spiral and other radial symmetric assemblages, Mech. Mater., 65 (2013), pp. 103-109.
[13] Connelly, R. and Dickinson, W., Periodic planar disc packings, , 372 (2014), 20120039. · Zbl 1353.52010
[14] Czapla, R., Nawalaniec, W., and Mityushev, V., Effective conductivity of random two-dimensional composites with circular non-overlapping inclusions, Comput. Mater. Sci., 63 (2012), pp. 118-126.
[15] Czarnecki, S. and Lewiński, T., Shaping the stiffest three-dimensional structures from two given isotropic materials, Comput. Assist. Mech. Eng. Sci., 13 (2006), pp. 53-83. · Zbl 1207.74052
[16] Drygaś, P., Gluzman, S., Mityushev, V., and Nawalaniec, W., Applied Analysis of Composite Media: Analytical and Computational Results for Materials Scientists and Engineers, Woodhead Publishing, Cambridge, UK, 2019.
[17] Engström, C., Inverse bounds and bulk properties of complex-valued two-component composites, SIAM J. Appl. Math., 67 (2006), pp. 194-213, doi:10.1137/060649598. · Zbl 1115.78009
[18] Filshtinskii, L., Problems of thermal conduction and thermoelasticity for a plane weaken by a double periodic array of equal circular holes, in Thermal Stresses in Elements of Constructions, Institute of Mechanics, Academy of Sciences USSR, Kiev, 1964, pp. 103-112.
[19] Gluzman, S., Mityushev, V., and Nawalaniec, W., Computational Analysis of Structured Media, Academic Press, London, 2018. · Zbl 1387.74001
[20] Golden, K. and Papanicolaou, G., Bounds for effective parameters of heterogeneous media by analytic continuation, Comm. Math. Phys., 90 (1983), pp. 473-491.
[21] Hashin, Z. and Shtrikman, S., A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys., 33 (1962), pp. 3125-3131. · Zbl 0111.41401
[22] Jikov, V. V., Kozlov, S. M., and Oleinik, O. A., Homogenization of Differential Operators and Integral Functionals, Springer, Berlin, Heidelberg, 2012.
[23] Lipton, R., Optimal lower bounds on the electric-field concentration in composite media, J. Appl. Phys., 96 (2004), pp. 2821-2827.
[24] Lipton, R. and Stuebner, M., Optimal design of composite structures for strength and stiffness: An inverse homogenization approach, Struct. Multidiscip. Optim., 33 (2007), pp. 351-362. · Zbl 1245.74007
[25] Matheron, G., Eléments pour une théorie des milieux poreux, Masson et Cie, Paris, 1967.
[26] McPhedran, R., Transport properties of cylinder pairs and of the square array of cylinders, Proc. Roy. Soc. London A. Math. Phys. Sci., 408 (1986), pp. 31-43.
[27] McPhedran, R. and Milton, G. W., Transport properties of touching cylinder pairs and of the square array of touching cylinders, Proc. Roy. Soc. London A. Math. Phys. Sci., 411 (1987), pp. 313-326.
[28] McPhedran, R. C. and Milton, G. W., Bounds and exact theories for the transport properties of inhomogeneous media, Appl. Phys. A, 26 (1981), pp. 207-220.
[29] Mikhlin, S. G., Integral Equations: And their Applications to Certain Problems in Mechanics, Mathematical Physics and Technology, Elsevier, Amsterdam, 2014.
[30] Milton, G. W., Bounds on the complex dielectric constant of a composite material, Appl. Phys. Lett., 37 (1980), pp. 300-302.
[31] Milton, G. W., Bounds on the complex permittivity of a two-component composite material, J. Appl. Phys., 52 (1981), pp. 5286-5293.
[32] Milton, G. W., Bounds on the transport and optical properties of a two-component composite material, J. Appl. Phys., 52 (1981), pp. 5294-5304.
[33] Milton, G. W., The Theory of Composites, Cambridge University Press, Cambridge, UK, 2002. · Zbl 0993.74002
[34] Mityushev, V., Generalized method of Schwarz and addition theorems in mechanics of materials containing cavities, Arch. Mech., 47 (1995), pp. 1169-1182. · Zbl 0841.73077
[35] Mityushev, V., Transport properties of doubly periodic arrays of circular cylinders and optimal design problems, Appl. Math. Optim., 44 (2001), pp. 17-31. · Zbl 0982.30019
[36] Mityushev, V., Representative cell in mechanics of composites and generalized Eisenstein-Rayleigh sums, Complex Var. Elliptic Equ., 51 (2006), pp. 1033-1045. · Zbl 1116.74056
[37] Mityushev, V., Effective properties of two-dimensional dispersed composites. Part II. Revision of self-consistent methods, Comput. Math. Appl., 121 (2022), pp. 74-84. · Zbl 1524.74096
[38] Mityushev, V. and Nawalaniec, W., Basic sums and their random dynamic changes in description of microstructure of 2d composites, Comput. Mater. Sci., 97 (2015), pp. 64-74.
[39] Mityushev, V., Nosov, D., and Wojnar, R., Two-dimensional equations of magneto-electro-elasticity, in Mechanics and Physics of Structured Media, Elsevier, Amsterdam, 2022, pp. 63-98.
[40] Mityushev, V. and Rogosin, S., Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions, , CRC Press, Boca Raton, FL, 1999. · Zbl 0957.30002
[41] Mityushev, V. and Rylko, N., Optimal distribution of the nonoverlapping conducting disks, Multiscale Model. Simul., 10 (2012), pp. 180-190, doi:10.1137/110823225. · Zbl 1246.74046
[42] Mityushev, V. and Rylko, N., Maxwell’s approach to effective conductivity and its limitations, Quart. J. Mech. Appl. Math., 66 (2013), pp. 241-251. · Zbl 1291.74156
[43] Mityushev, V. and Rylko, N., Effective properties of two-dimensional dispersed composites. Part I. Schwarz’s alternating method, Comput. Math. Appl., 111 (2022), pp. 50-60. · Zbl 1524.74097
[44] Moulinec, H., Suquet, P., and Milton, G. W., Convergence of iterative methods based on Neumann series for composite materials: Theory and practice, Internat. J. Numer. Methods Engrg., 114 (2018), pp. 1103-1130. · Zbl 07878351
[45] Natanzon, V. Y., On stresses in a tensioned plate with holes located in the chess order, Mat. Sb., 42 (1935), pp. 617-636.
[46] Nawalaniec, W., Classifying and analysis of random composites using structural sums feature vector, Proc. Roy. Soc. A, 475 (2019), 20180698.
[47] Perrins, W., McKenzie, D. R., and McPhedran, R., Transport properties of regular arrays of cylinders, Proc. Roy. Soc. London Ser. A, 369 (1979), pp. 207-225.
[48] Rayleigh, L., On the influence of obstacles arranged in rectangular order upon the properties of a medium, Philos. Mag. J. Sci., 34 (1892), pp. 481-502. · JFM 24.1015.02
[49] Rodriguez-Ramos, R., Sabina, F. J., Guinovart-Diaz, R., and Bravo-Castillero, J., Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents-I. Elastic and square symmetry, Mech. Mater., 33 (2001), pp. 223-235. · Zbl 1017.74055
[50] Roque-Piedra, A., Rodriguez-Ramos, R., Penta, R., and Ramirez-Torres, A., Effective properties of homogenised nonlinear viscoelastic composites, Materials, 16 (2023), 3974.
[51] Rylko, N., Effective anti-plane properties of piezoelectric fibrous composites, Acta Mech., 224 (2013), pp. 2719-2734. · Zbl 1398.74105
[52] Tokarzewski, S. and Telega, J., S-continued fraction method for the investigation of a complex dielectric constant of two-components composite, Acta Appl. Math., 49 (1997), pp. 55-83. · Zbl 0888.41010
[53] Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer-Verlag, New York, 2002. · Zbl 0988.74001
[54] Weil, A., Elliptic functions according to Eisenstein and Kronecker, , Springer-Verlag, Berlin, New York, 1999. · Zbl 0955.11001
[55] Wiener, O., Die theorie des mischkörpers für das feld der stationären strömung, Abhandlungen der Sachsischen Gesellschaft der Akademischen Wissenschaften in Mathematik und Physik, 32 (1912), pp. 507-604. · JFM 43.0998.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.