×

Eulerian digraphs and toric Calabi-Yau varieties. (English) Zbl 1298.81266

Summary: We investigate the structure of a simple class of affine toric Calabi-Yau varieties that are defined from quiver representations based on finite eulerian directed graphs (digraphs). The vanishing first Chern class of these varieties just follows from the characterisation of eulerian digraphs as being connected with all vertices balanced. Some structure theory is used to show how any eulerian digraph can be generated by iterating combinations of just a few canonical graph-theoretic moves. We describe the effect of each of these moves on the lattice polytopes which encode the toric Calabi-Yau varieties and illustrate the construction in several examples. We comment on physical applications of the construction in the context of moduli spaces for superconformal gauged linear sigma models.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T20 Quantum field theory on curved space or space-time backgrounds
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T60 Supersymmetric field theories in quantum mechanics
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
81T18 Feynman diagrams
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
16G20 Representations of quivers and partially ordered sets
19L10 Riemann-Roch theorems, Chern characters

References:

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [SPIRES]. · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[2] I.R. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau singularity, Nucl. Phys.B 536 (1998) 199 [hep-th/9807080] [SPIRES]. · Zbl 0948.81619 · doi:10.1016/S0550-3213(98)00654-3
[3] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept.323 (2000) 183 [hep-th/9905111] [SPIRES]. · Zbl 1368.81009 · doi:10.1016/S0370-1573(99)00083-6
[4] M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [SPIRES].
[5] M.R. Douglas, B.R. Greene and D.R. Morrison, Orbifold resolution by D-branes, Nucl. Phys.B 506 (1997) 84 [hep-th/9704151] [SPIRES]. · Zbl 0925.81266 · doi:10.1016/S0550-3213(97)00517-8
[6] C. Beasley, B.R. Greene, C.I. Lazaroiu and M.R. Plesser, D 3-branes on partial resolutions of abelian quotient singularities of Calabi-Yau threefolds, Nucl. Phys.B 566 (2000) 599 [hep-th/9907186] [SPIRES]. · Zbl 0951.81037 · doi:10.1016/S0550-3213(99)00646-X
[7] B. Feng, A. Hanany and Y.-H. He, D-brane gauge theories from toric singularities and toric duality, Nucl. Phys.B 595 (2001) 165 [hep-th/0003085] [SPIRES]. · Zbl 0972.81138 · doi:10.1016/S0550-3213(00)00699-4
[8] B. Feng, A. Hanany and Y.-H. He, Phase structure of D-brane gauge theories and toric duality, JHEP08 (2001) 040 [hep-th/0104259] [SPIRES]. · doi:10.1088/1126-6708/2001/08/040
[9] D. Forcella, A. Hanany, Y.-H. He and A. Zaffaroni, The master space of N = 1 gauge theories, JHEP08 (2008) 012 [arXiv:0801.1585] [SPIRES]. · doi:10.1088/1126-6708/2008/08/012
[10] D. Forcella, A. Hanany and A. Zaffaroni, Master space, Hilbert series and Seiberg duality, JHEP07 (2009) 018 [arXiv:0810.4519] [SPIRES]. · doi:10.1088/1126-6708/2009/07/018
[11] A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [SPIRES].
[12] S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP01 (2006) 096 [hep-th/0504110] [SPIRES]. · doi:10.1088/1126-6708/2006/01/096
[13] B. Feng, Y.-H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys.12 (2008) 3 [hep-th/0511287] [SPIRES]. · Zbl 1144.81501
[14] S. Franco and D. Vegh, Moduli spaces of gauge theories from dimer models: proof of the correspondence, JHEP11 (2006) 054 [hep-th/0601063] [SPIRES]. · doi:10.1088/1126-6708/2006/11/054
[15] S. Franco et al., Gauge theories from toric geometry and brane tilings, JHEP01 (2006) 128 [hep-th/0505211] [SPIRES]. · doi:10.1088/1126-6708/2006/01/128
[16] A. Hanany and D. Vegh, Quivers, tilings, branes and rhombi, JHEP10 (2007) 029 [hep-th/0511063] [SPIRES]. · doi:10.1088/1126-6708/2007/10/029
[17] C.E. Beasley and M.R. Plesser, Toric duality is Seiberg duality, JHEP12 (2001) 001 [hep-th/0109053] [SPIRES]. · doi:10.1088/1126-6708/2001/12/001
[18] E. Witten, Phases of N = 2 theories in two dimensions, Nucl. Phys.B 403 (1993) 159 [hep-th/9301042] [SPIRES]. · Zbl 0910.14020 · doi:10.1016/0550-3213(93)90033-L
[19] J. Davey, A. Hanany and J. Pasukonis, On the classification of brane tilings, JHEP01 (2010) 078 [arXiv:0909.2868] [SPIRES]. · Zbl 1269.81120 · doi:10.1007/JHEP01(2010)078
[20] J.A. Bondy and U.S.R. Murty, Graph theory with applications, North Holland, Amsterdam Netherlands (1976). · Zbl 1226.05083
[21] J. Bang-Jensen and G. Gutin, Digraphs: theory, algorithms and applications, Springer Verlag, Berlin Germany (2000).
[22] R. Diestel, Graph theory, Springer Verlag, Berlin Germany (2005). · Zbl 1074.05001
[23] M. Mihail and P. Winkler, On the number of Eulerian orientations of a graph, in the proceedings of the 3rd ACM-SIAM Symposium on Discrete Algorithms, Orlando U.S.A. (1992) 138. · Zbl 0814.05042
[24] M. Mihail and P. Winkler, On the number of Eulerian orientations of a graph, Algorithmica16 (1996) 402. · Zbl 0861.68066
[25] Welsh, DJA, The computational complexity of some classical problems from statistical physics, 307 (1990), Oxford U.K. · Zbl 0737.60094
[26] C.D.T. Johnson, Eulerian digraph immersion, Ph.D. Thesis, Princeton University, Princeton U.S.A. (2002).
[27] R. Arratia, B. Bollobas, and G.B. Sorkin, The interlace polynomial of a graph, J. Comb. Th.B 92 (2004) 199 [math/0209045]. · Zbl 1060.05062
[28] A.C. da Silva, Symplectic toric manifolds, http://www.math.ist.utl.pt/∼acannas/Books/toric.pdf. · Zbl 1457.53001
[29] D. Cox, J. Little,and H. Schenck, Toric varieties, http://www.cs.amherst.edu/∼dac/toric.html. · Zbl 1223.14001
[30] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies131, Princeton University Press, Princeton U.S.A. (1993). · Zbl 0813.14039
[31] R. Thomas, Notes on GIT and symplectic reduction for bundles and varieties, math/0512411. · Zbl 1132.14043
[32] S.F.B. de Moraes and C. Tomei, Moment maps on symplectic cones, Pacific J. Math.181 (1997) 357. · Zbl 0902.58011 · doi:10.2140/pjm.1997.181.357
[33] E. Lerman, Contact toric manifolds, J. Symplectic Geom.1 (2003) 785 [math.SG/0107201]. · Zbl 1079.53118
[34] M.A. Luty and W. Taylor, Varieties of vacua in classical supersymmetric gauge theories, Phys. Rev.D 53 (1996) 3399 [hep-th/9506098] [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.