×

Mirror duality of Landau-Ginzburg models via discrete Legendre transforms. (English) Zbl 1317.53117

Castano-Bernard, Ricardo (ed.) et al., Homological mirror symmetry and tropical geometry. Based on the workshop on mirror symmetry and tropical geometry, Cetraro, Italy, July 2–8, 2011. Cham: Springer (ISBN 978-3-319-06513-7/pbk; 978-3-319-06514-4/ebook). Lecture Notes of the Unione Matematica Italiana 15, 377-406 (2014).
Summary: We recall the semi-flat Strominger-Yau-Zaslow (SYZ) picture of mirror symmetry and discuss the transition from the Legendre transform to a discrete Legendre transform in the large complex structure limit. We recall the reconstruction problem of the singular Calabi-Yau fibres associated to a tropical manifold and review its solution in the toric setting. We discuss the monomial-divisor correspondence for discrete Legendre duals and use this to give a mirror duality for Landau Ginzburg models motivated from the SYZ perspective and Floer theory. We mention its application for the construction of mirror symmetry partners for varieties of general type and discuss the straightening of the boundary of a tropical manifold corresponding to a smoothing of the divisor in the complement of a special Lagrangian fibration.
For the entire collection see [Zbl 1300.14001].

MSC:

53D37 Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category
53D40 Symplectic aspects of Floer homology and cohomology
14J33 Mirror symmetry (algebro-geometric aspects)
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14J10 Families, moduli, classification: algebraic theory

References:

[1] M. Abouzaid, D. Auroux, L. Katzarkov, Mirror symmetry for blowups and hypersurfaces in toric varieties [arXiv:1205.0053] · Zbl 1368.14056
[2] M. Abreu, Kähler geometry of toric manifolds in symplectiv coordinates, in Symplectic and Contact Topology: Interactions and Perspectives, ed. by Y. Eliashberg, B. Khesin, F. Lalonde. Fields Institute Communications, vol. 35 (American Mathematical Society, Providence, 2003), pp. 1-24 · Zbl 1044.53051
[3] Arnold, V. I., Mathematical Methods of Classical Mechanics (1978), Berlin: Springer, Berlin · Zbl 0386.70001 · doi:10.1007/978-1-4757-1693-1
[4] Auroux, D., Mirror symmetry and T-duality in the complement of the anticanonical divisor, J. Gökova Geom. Topol., 1, 51-91 (2007) · Zbl 1181.53076
[5] Auroux, D.; Cao, H. D.; Yau, S. T., Special Lagrangian fibrations, wall-crossing, and mirror symmetry, Surveys in Differential Geometry, vol. 13, 1-47 (2009), Somerville: International Press, Somerville · Zbl 1184.53085
[6] P. Berglund, T. Hübsch, A Generalized Construction of Mirror Manifolds [arXiv:hep-th/9201014] · Zbl 0904.32021
[7] L. Borisov, Berglund-Hubsch mirror symmetry via vertex algebras [arXiv:1007.2633] · Zbl 1317.17032
[8] P. Clarke, Duality for toric Landau-Ginzburg models [arXiv:0803.0447] · Zbl 1386.81130
[9] T. Bridgeland et al., Dirichlet Branes and mirror symmetry, in Clay Mathematics Monographs, ed. by M. Douglas, M. Gross (CMI/AMS publication, 2009), 681 pp. · Zbl 1188.14026
[10] K. Chan, N.C. Leung, On SYZ Mirror Transformations [arxiv.org:0808.1551v2] · Zbl 1213.14073
[11] K. Chan, S. Lau, N.C. Leung, SYZ mirror symmetry for toric Calabi-Yau manifolds [math/arXiv:1006.3830] · Zbl 1297.53061
[12] Castano-Bernard, R.; Matessi, D., Lagrangian 3-torus fibrations, J. Differ. Geom., 81, 3, 483-573 (2009) · Zbl 1177.14080
[13] M. Carl, M. Pumperla, B. Siebert, A tropical view on Landau-Ginzburg models. Siebert’s webpage
[14] Chiodo, A.; Ruan, Y., LG/CY correspondence: The state space isomorphism, Adv. Math., 227, 6, 2157-2188 (2011) · Zbl 1245.14038 · doi:10.1016/j.aim.2011.04.011
[15] A.C. da Silva, Symplectic Toric Manifolds. www.math.ist.utl.pt/acannas/Books/toric.pdf · Zbl 1457.53001
[16] K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Intersection Floer Theory: Anomaly and Obstruction. AMS/IP Studies in Advanced Mathematics
[17] W. Fulton, Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131 (Princeton University Press, Princeton, 1993) [MR 1234037, Zbl 0813.14039] · Zbl 0813.14039
[18] M. Gross, L. Katzarkov, H. Ruddat, Towards Mirror Symmetry for Varieties of General Type [arXiv:1202.4042] · Zbl 1371.14046
[19] Toric degenerations and Batyrev-Borisov duality. Math. Ann. 333(3), 645-688 (2005) · Zbl 1086.14035
[20] M. Gross, The Strominger-Yau-Zaslow conjecture: From torus fibrations to toric degenerations, in Proceedings of Symposia in Pure Mathematics (2008), 44 p. [arXiv:0802.3407] · Zbl 1173.14031
[21] M. Gross, Mirror symmetry for \(\mathbb{P}^2\) and tropical geometry [arXiv:0903.1378v2] · Zbl 1190.14038
[22] M. Gross, Mirror symmetry and the Strominger-Yau-Zaslow conjecture [arXiv:1212.4220] · Zbl 1294.14015
[23] Gross, M.; Siebert, B., Affine manifolds, log structures, and mirror symmetry, Turk. J. Math., 27, 33-60 (2003) · Zbl 1063.14048
[24] Gross, M.; Siebert, B., Mirror symmetry via logarithmic degeneration data I, J. Differ. Geom., 72, 169-338 (2006) · Zbl 1107.14029
[25] Gross, M.; Siebert, B., Mirror symmetry via logarithmic degeneration data II, J. Algebr. Geom., 19, 679-780 (2010) · Zbl 1209.14033 · doi:10.1090/S1056-3911-2010-00555-3
[26] M. Gross, B. Siebert, From real affine geometry to complex geometry. Ann. Math. 174, 1301-1428 · Zbl 1266.53074
[27] Guillemin, V., Kaehler structures on toric varieties, J. Differ. Geom., 40, 285-309 (1994) · Zbl 0813.53042
[28] Hitchin, N., The moduli space of special Lagrangian submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25, 4, 503-515 (1997) · Zbl 1015.32022
[29] C. Haase, I. Zharkov, Integral affine structures on spheres and torus fibrations of Calabi-Yau toric hypersurfaces, I & II [math.AG/0205321, math.AG/0301222]
[30] Leung, N. C., Mirror symmetry without corrections, Commun. Anal. Geom., 13, 2, 287-331 (2005) · Zbl 1086.32022 · doi:10.4310/CAG.2005.v13.n2.a2
[31] G. Mikhalkin, Amoebas of Algebraic Varieties and Tropical Geometry [arXiv:math/0403015] · Zbl 1072.14013
[32] McLean, R. C., Deformations of calibrated submanifolds, Commun. Anal. Geom., 6, 4, 705-747 (1998) · Zbl 0929.53027
[33] J. Pascaleff, Floer cohomology in the mirror of the projective plane and a binodal cubic curve [arXiv:math/1109.3255] · Zbl 1334.53090
[34] H. Ruddat, Partielle Auflösung eines torischen log-Calabi-Yau-Raumes, in Diplomarbeit, A.-L. Universität Freiburg (2005). http://www.freidok.uni-freiburg.de/volltexte/6162
[35] H. Ruddat, Log Hodge groups on a toric Calabi-Yau degeneration, in Mirror Symmetry and Tropical Geometry. Contemporary Mathematics, vol. 527 (American Mathematical Society, Providence, 2010), pp. 113-164 · Zbl 1241.14017
[36] H. Ruddat, B. Siebert, The ubiquity of Landau-Ginzburg models (in preparation) · Zbl 1454.14110
[37] A. Strominger, S.-T. Yau, E. Zaslow, Mirror Symmetry is T-Duality [arXiv:hep-th/9606040] · Zbl 0896.14024
[38] H.M. Tsoi, Cohomological Properties of Toric Degenerations of Calabi-Yau Pairs, Dissertation
[39] I. Zharkov, Torus Fibrations of Calabi-Yau Hypersurfaces in Toric Varieties and Mirror Symmetry [arXiv:math/9806091] · Zbl 0957.14031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.