×

Infinite time aggregation for the critical Patlak-Keller-Segel model in \(\mathbb R^2\). (English) Zbl 1155.35100

For the two-dimensional Smoluchowski-Poisson equation (also called the parabolic-elliptic Keller-Segel chemotaxis model)
\[ \begin{aligned} \partial_t n &= \nabla\cdot (\nabla n-\chi n \nabla c), \quad (t,x)\in (0,\infty)\times{\mathbb R}^2,\\ c(t,x)&=-\frac{1}{2\pi} \int_{{\mathbb R}^2} \ln| x-y| n(t,y)\,dy, \quad (t,x)\in (0,\infty)\times{\mathbb R}^2,\\ n(0,x)& = n_0(x)\geq 0, \quad x\in {\mathbb R}^2, \end{aligned} \]
the value of the \(L^1\)-norm of \(n_0\) governs the maximal existence time of the solution \(n\). More precisely, given \(\chi>0\), if \(\chi \| n_0\| _1>8\pi\), then the solution becomes unbounded in finite time while the solution is global and bounded if \(\chi \| n_0\| _1<8\pi\). The critical case \(\chi \| n_0\| _1=8\pi\) is analysed in the paper under review: the solution is proved to be global and becomes unbounded as \(t\to\infty\). More precisely, \(n(t)\) behaves as \((8\pi/\chi)\delta_{x_M}\) as \(t\to\infty\), \(x_M\) denoting the centre of mass of \(n_0\) and \(\delta_{x_M}\) the Dirac measure centred at \(x_M\).

MSC:

35Q80 Applications of PDE in areas other than physics (MSC2000)
35B35 Stability in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Arnold, Entropies and equilibria of many-particle systems: an essay on recent research, Monatsh Math 142 (1) pp 35– (2004) · Zbl 1063.35109
[2] Aubin, Un théorème de compacité, C R Acad Sci Paris 256 pp 5042– (1963)
[3] Bavaud, Equilibrium properties of the Vlasov functional: the generalized Poisson-Boltzmann-Emden equation, Rev Modern Phys 63 (1) pp 129– (1991)
[4] Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann of Math (2) 138 (1) pp 213– (1993) · Zbl 0826.58042
[5] Benguria, R. D. Von Weizsaecker and exchange corrections in the Thomas Fermi theory. Doctoral dissertation, Princeton University, Princeton, N.J., 1979.
[6] Benguria, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Comm Math Phys 79 (2) pp 167– (1981) · Zbl 0478.49035
[7] Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv Math Sci Appl 8 (2) pp 715– (1998) · Zbl 0913.35021
[8] Biler, The 8{\(\pi\)}-problem for radially symmetric solutions of a chemotaxis model in a disc, Topol Methods Nonlinear Anal 27 (1) pp 133– (2006) · Zbl 1135.35367
[9] Biler, The 8{\(\pi\)}-problem for radially symmetric solutions of a chemotaxis model in the plane, Math Methods Appl Sci 29 (13) pp 1563– (2006) · Zbl 1105.35131
[10] Biler, A class of nonlocal parabolic problems occurring in statistical mechanics, Colloq Math 66 (1) pp 131– (1993) · Zbl 0818.35046
[11] Biler, Global and exploding solutions in a model of self-gravitating systems, Rep Math Phys 52 (2) pp 205– (2003) · Zbl 1043.85001
[12] Billingsley, Convergence of probability measures (1999) · Zbl 0944.60003 · doi:10.1002/9780470316962
[13] Blanchet, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron J Differential Equations 2006 (44) pp 1– · Zbl 1112.35023
[14] Calvez, Volume effects in the Keller-Segel model: energy estimates preventing blow-up, J Math Pures Appl (9) 86 (2) pp 155– (2006) · Zbl 1116.35057 · doi:10.1016/j.matpur.2006.04.002
[15] Calvez, V.; Perthame, B.; Sharifi Tabar, M. Modified Keller-Segel system and critical mass for the log interaction kernel. preprint 2006. Available online at: http://calvino.polito.it/mcrtnline/library.html. · Zbl 1126.35077
[16] Carlen, Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on Sn, Geom Funct Anal 2 (1) pp 90– (1992) · Zbl 0754.47041
[17] Chalub, Kinetic models for chemotaxis and their drift-diffusion limits, Monatsh Math 142 (1) pp 123– (2004) · Zbl 1052.92005
[18] Chen, Classification of solutions of some nonlinear elliptic equations, Duke Math J 63 (3) pp 615– (1991)
[19] Childress, Nonlinear aspects of chemotaxis, Math Biosci 56 (3) pp 217– (1981) · Zbl 0481.92010
[20] Corrias, A chemotaxis model motivated by angiogenesis, C R Math Acad Sci Paris 336 (2) pp 141– (2003) · Zbl 1028.35062 · doi:10.1016/S1631-073X(02)00008-0
[21] Corrias, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J Math 72 pp 1– (2004) · Zbl 1115.35136
[22] Dolbeault, Optimal critical mass in the two-dimensional Keller-Segel model in \(\mathbb{R}\)2, C R Math Acad Sci Paris 339 (9) pp 611– (2004) · Zbl 1056.35076 · doi:10.1016/j.crma.2004.08.011
[23] Gabetta, Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation, J Statist Phys 81 (5) pp 901– (1995) · Zbl 1081.82616
[24] Gajewski, Global behavior of a reaction-diffusion system modelling chemotaxis, Math Nachr 195 pp 77– (1998) · Zbl 0918.35064 · doi:10.1002/mana.19981950106
[25] Herrero, Singularity patterns in a chemotaxis model, Math Ann 306 (3) pp 583– (1996) · Zbl 0864.35008
[26] Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber Deutsch Math-Verein 105 (3) pp 103– (2003) · Zbl 1071.35001
[27] Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II, Jahresber Deutsch Math-Verein 106 (2) pp 51– (2004) · Zbl 1072.35007
[28] Horstmann, Blow-up in a chemotaxis model without symmetry assumptions, European J Appl Math 12 (2) pp 159– (2001) · Zbl 1017.92006
[29] Jäger, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans Amer Math Soc 329 (2) pp 819– (1992) · Zbl 0746.35002
[30] Keller, Initiation of slide mold aggregation viewed as an instability, J Theor Biol 26 pp 399– (1970) · Zbl 1170.92306
[31] Kowalczyk, Preventing blow-up in a chemotaxis model, J Math Anal Appl 305 (2) pp 566– (2005) · Zbl 1065.35063
[32] Laurençot, P. Personal communication, 2006.
[33] Laurençot, The continuous coagulation-fragmentation equations with diffusion, Arch Ration Mech Anal 162 (1) pp 45– (2002) · Zbl 0997.45005
[34] Lê Châu-Hoàn. Etude de la classe des opérateurs m-accrétifs de L1({\(\Omega\)}) et accrétifs dans L({\(\Omega\)}). Thèse de 3ème cycle, Université de Paris VI, 1977.
[35] Lions, Équations différentielles opérationnelles et problèmes aux limites 111 (1961)
[36] Marrocco, Numerical simulation of chemotactic bacteria aggregation via mixed finite elements, M2AN Math Model Numer Anal 37 (4) pp 617– (2003) · Zbl 1065.92006
[37] Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv Math Sci Appl 5 (2) pp 581– (1995) · Zbl 0843.92007
[38] Nagai, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial Ekvac 40 (3) pp 411– (1997) · Zbl 0901.35104
[39] Naito, Self-similar solutions to a nonlinear parabolic-elliptic system. Proceedings of Third East Asia Partial Differential Equation Conference, Taiwanese J Math 8 (1) pp 43– (2004) · Zbl 1113.35058
[40] Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, J Theor Biol 42 (1) pp 63– (1973)
[41] Othmer, Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks, SIAM J Appl Math 57 (4) pp 1044– (1997) · Zbl 0990.35128
[42] Padmanabhan, Statistical mechanics of gravitating systems, Phys Rep 188 (5) pp 285– (1990) · Zbl 1211.82001
[43] Patlak, Random walk with persistence and external bias, Bull Math Biophys 15 (3) pp 311– (1953) · Zbl 1296.82044
[44] Perthame, PDE models for chemotactic movements: parabolic, hyperbolic and kinetic, Appl Math 49 (6) pp 539– (2004) · Zbl 1099.35157
[45] Senba, Weak solutions to a parabolic-elliptic system of chemotaxis, J Funct Anal 191 (1) pp 17– (2002) · Zbl 1005.35026
[46] Senba, Applied analysis. Mathematical methods in natural science (2004) · Zbl 1053.00001 · doi:10.1142/p320
[47] Simon, Compact sets in the space Lp(0, T; B), Ann Mat Pura Appl (4) 146 pp 65– (1987)
[48] Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems, SIAM J Appl Math 61 (1) pp 183– (2000) · Zbl 0963.60093
[49] Suzuki, Free energy and self-interacting particles 62 (2005) · Zbl 1082.35006 · doi:10.1007/0-8176-4436-9
[50] van Duijn, Global existence conditions for a nonlocal problem arising in statistical mechanics, Adv Differential Equations 9 (1) pp 133– (2004) · Zbl 1108.35137
[51] Velázquez, Stability of some mechanisms of chemotactic aggregation, SIAM J Appl Math 62 (5) pp 1581– (2002) · Zbl 1013.35004
[52] Velázquez, Point dynamics in a singular limit of the Keller-Segel model. I. Motion of the concentration regions, SIAM J Appl Math 64 (4) pp 1198– (2004) · Zbl 1058.35021
[53] Velázquez, Point dynamics in a singular limit of the Keller-Segel model. II. Formation of the concentration regions, SIAM J Appl Math 64 (4) pp 1224– (2004) · Zbl 1058.35022
[54] Wolansky, Comparison between two models of self-gravitating clusters: conditions for gravitational collapse, Nonlinear Anal 24 (7) pp 1119– (1995) · Zbl 0858.70006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.