×

Nonlocal differential equations with convolution coefficients and applications to fractional calculus. (English) Zbl 1504.34051

Author’s abstract: The existence of at least one positive solution to a large class of both integer- and fractional-order nonlocal differential equations, of which one model case is \[ -A((b*u^q)(1))u^{\prime\prime}(t)=\lambda f(t,u(t)),\quad t\in(0,1),\,q\geq 1, \] is considered. Due to the coefficient \(A((b*u^q)(1))\) appearing in the differential equation, the equation has a coefficient containing a convolution term. By choosing the kernel \(b\) in various ways, specific nonlocal coefficients can be recovered such as nonlocal coefficients equivalent to a fractional integral of Riemann-Liouville type. The results rely on the use of a nonstandard order cone together with topological fixed point theory. Applications to fractional differential equations are given, including a problem related to the \((n-1,1)\)-conjugate problem.

MSC:

34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
34A09 Implicit ordinary differential equations, differential-algebraic equations
34B08 Parameter dependent boundary value problems for ordinary differential equations
26A33 Fractional derivatives and integrals
47H07 Monotone and positive operators on ordered Banach spaces or other ordered topological vector spaces
47H30 Particular nonlinear operators (superposition, Hammerstein, Nemytskiĭ, Uryson, etc.)
Full Text: DOI

References:

[1] G. A. Afrouzi, N. T. Chung and S. Shakeri, Existence and non-existence results for nonlocal elliptic systems via sub-supersolution method, Funkcial. Ekvac. 59 (2016), no. 3, 303-313. · Zbl 1365.35028
[2] C. O. Alves and D.-P. Covei, Existence of solution for a class of nonlocal elliptic problem via sub-supersolution method, Nonlinear Anal. Real World Appl. 23 (2015), 1-8. · Zbl 1319.35057
[3] J. J. Aly, Thermodynamics of a two-dimensional self-gravitating system, Phys. Rev. E (3) 49 (1994), no. 5, 3771-3783.
[4] A. Ambrosetti and D. Arcoya, Positive solutions of elliptic Kirchhoff equations, Adv. Nonlinear Stud. 17 (2017), no. 1, 3-15. · Zbl 1378.35094
[5] N. Azzouz and A. Bensedik, Existence results for an elliptic equation of Kirchhoff-type with changing sign data, Funkcial. Ekvac. 55 (2012), no. 1, 55-66. · Zbl 1248.35065
[6] F. Bavaud, Equilibrium properties of the Vlasov functional: the generalized Poisson-Boltzmann-Emden equation, Rev. Modern Phys. 63 (1991), no. 1, 129-148.
[7] P. Biler, A. Krzywicki and T. Nadzieja, Self-interaction of Brownian particles coupled with thermodynamic processes, Rep. Math. Phys. 42 (1998), no. 3, 359-372. · Zbl 1010.82028
[8] P. Biler and T. Nadzieja, A class of nonlocal parabolic problems occurring in statistical mechanics, Colloq. Math. 66 (1993), no. 1, 131-145. · Zbl 0818.35046
[9] P. Biler and T. Nadzieja, Nonlocal parabolic problems in statistical mechanics, Nonlinear Anal. 30 (1997), 5343-5350. · Zbl 0892.35073
[10] S. Boulaaras, Existence of positive solutions for a new class of Kirchhoff parabolic systems, Rocky Mountain J. Math. 50 (2020), no. 2, 445-454. · Zbl 1443.35075
[11] S. Boulaaras and R. Guefaifia, Existence of positive weak solutions for a class of Kirrchoff elliptic systems with multiple parameters, Math. Methods Appl. Sci. 41 (2018), no. 13, 5203-5210. · Zbl 1397.35096
[12] A. Cabada, G. Infante and F. A. F. Tojo, Nonzero solutions of perturbed Hammerstein integral equations with deviated arguments and applications, Topol. Methods Nonlinear Anal. 47 (2016), no. 1, 265-287. · Zbl 1366.45005
[13] A. Cabada, G. Infante and F. A. F. Tojo, Nonlinear perturbed integral equations related to nonlocal boundary value problems, Fixed Point Theory 19 (2018), no. 1, 65-92. · Zbl 1392.45010
[14] E. Caglioti, P.-L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, Comm. Math. Phys. 143 (1992), no. 3, 501-525. · Zbl 0745.76001
[15] N. T. Chung, Existence of positive solutions for a class of Kirchhoff type systems involving critical exponents, Filomat 33 (2019), no. 1, 267-280. · Zbl 1499.35249
[16] F. Cianciaruso, G. Infante and P. Pietramala, Solutions of perturbed Hammerstein integral equations with applications, Nonlinear Anal. Real World Appl. 33 (2017),´317-347. · Zbl 1351.45006
[17] F. J. S. A. Corrêa, On positive solutions of nonlocal and nonvariational elliptic problems, Nonlinear Anal. 59 (2004), no. 7, 1147-1155. · Zbl 1133.35043
[18] F. J. S. A. Corrêa, S. D. B. Menezes and J. Ferreira, On a class of problems involving a nonlocal operator, Appl. Math. Comput. 147 (2004), no. 2, 475-489. · Zbl 1086.35038
[19] J. M. Davis and J. Henderson, Triple positive solutions for (k,n-k) conjugate boundary value problems, Math. Slovaca 51 (2001), no. 3, 313-320. · Zbl 0996.34017
[20] M. Delgado, C. Morales-Rodrigo, J. R. Santos Júnior and A. Suárez, Non-local degenerate diffusion coefficients break down the components of´positive solutions, Adv. Nonlinear Stud. 20 (2020), no. 1, 19-30. · Zbl 1437.35293
[21] J. A. M. do Ó, S. Lorca, J. Sánchez and P. Ubilla, Positive solutions for some nonlocal and nonvariational elliptic systems, Complex Var. Elliptic Equ. 61 (2016), no. 3, 297-314. · Zbl 1338.35158
[22] P. W. Eloe and J. Henderson, Singular nonlinear (k,n-k) conjugate boundary value problems, J. Differential Equations 133 (1997), no. 1, 136-151. · Zbl 0870.34031
[23] C. S. Goodrich, Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett. 23 (2010), no. 9, 1050-1055. · Zbl 1204.34007
[24] C. S. Goodrich, Existence of a positive solution to systems of differential equations of fractional order, Comput. Math. Appl. 62 (2011), no. 3, 1251-1268. · Zbl 1253.34012
[25] C. S. Goodrich, On nonlocal BVPs with nonlinear boundary conditions with asymptotically sublinear or superlinear growth, Math. Nachr. 285 (2012), no. 11-12, 1404-1421. · Zbl 1252.34032
[26] C. S. Goodrich, On nonlinear boundary conditions satisfying certain asymptotic behavior, Nonlinear Anal. 76 (2013), 58-67. · Zbl 1264.34030
[27] C. S. Goodrich, On nonlinear boundary conditions involving decomposable linear functionals, Proc. Edinb. Math. Soc. (2) 58 (2015), no. 2, 421-439. · Zbl 1322.34038
[28] C. S. Goodrich, Semipositone boundary value problems with nonlocal, nonlinear boundary conditions, Adv. Differential Equations 20 (2015), no. 1-2, 117-142. · Zbl 1318.34034
[29] C. S. Goodrich, Coercive nonlocal elements in fractional differential equations, Positivity 21 (2017), no. 1, 377-394. · Zbl 1367.26017
[30] C. S. Goodrich, The effect of a nonstandard cone on existence theorem applicability in nonlocal boundary value problems, J. Fixed Point Theory Appl. 19 (2017), no. 4, 2629-2646. · Zbl 1390.45015
[31] C. S. Goodrich, New Harnack inequalities and existence theorems for radially symmetric solutions of elliptic PDEs with sign changing or vanishing Green’s function, J. Differential Equations 264 (2018), no. 1, 236-262. · Zbl 1379.35097
[32] C. S. Goodrich, Radially symmetric solutions of elliptic PDEs with uniformly negative weight, Ann. Mat. Pura Appl. (4) 197 (2018), no. 5, 1585-1611. · Zbl 1412.35144
[33] C. S. Goodrich, Coercive functionals and their relationship to multiplicity of solution to nonlocal boundary value problems, Topol. Methods Nonlinear Anal. 54 (2019), no. 2, 409-426. · Zbl 1436.45005
[34] C. S. Goodrich, A topological approach to a class of one-dimensional Kirchhoff equations, Proc. Amer. Math. Soc. Ser. B 8 (2021), 158-172. · Zbl 1477.34044
[35] C. S. Goodrich, A topological approach to nonlocal elliptic partial differential equations on an annulus, Math. Nachr. 294 (2021), no. 2, 286-309. · Zbl 1525.34047
[36] C. S. Goodrich, Nonlocal differential equations with concave coefficients of convolution type, Nonlinear Anal. 211 (2021), Paper No. 112437. · Zbl 1494.34082
[37] C. S. Goodrich and C. Lizama, A transference principle for nonlocal operators using a convolutional approach: Fractional monotonicity and convexity, Israel J. Math. 236 (2020), no. 2, 533-589. · Zbl 1508.47080
[38] C. S. Goodrich and C. Lizama, Existence and monotonicity of nonlocal boundary value problems: The one dimensional case, Proc. Roy. Soc. Edinburgh Sect. A (2021), 10.1017/prm.2020.90. · Zbl 1515.34031 · doi:10.1017/prm.2020.90
[39] C. S. Goodrich and C. Lizama, Positivity, monotonicity, and convexity for convolution operators, Discrete Contin. Dyn. Syst. 40 (2020), no. 8, 4961-4983. · Zbl 1440.42029
[40] C. S. Goodrich and A. C. Peterson, Discrete Fractional Calculus, Springer, Cham, 2015. · Zbl 1350.39001
[41] J. R. Graef and J. R. L. Webb, Third order boundary value problems with nonlocal boundary conditions, Nonlinear Anal. 71 (2009), no. 5-6, 1542-1551. · Zbl 1189.34034
[42] D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston, 1988. · Zbl 0661.47045
[43] G. Infante, Nonzero positive solutions of nonlocal elliptic systems with functional BCs, J. Elliptic Parabol. Equ. 5 (2019), no. 2, 493-505. · Zbl 1433.35072
[44] G. Infante, Eigenvalues of elliptic functional differential systems via a Birkhoff-Kellogg type theorem, Mathematics 9 (2021), 10.3390/math9010004. · doi:10.3390/math9010004
[45] G. Infante and P. Pietramala, Existence and multiplicity of non-negative solutions for systems of perturbed Hammerstein integral equations, Nonlinear Anal. 71 (2009), no. 3-4, 1301-1310. · Zbl 1169.45001
[46] G. Infante and P. Pietramala, A third order boundary value problem subject to nonlinear boundary conditions, Math. Bohem. 135 (2010), no. 2, 113-121. · Zbl 1224.34036
[47] G. Infante and P. Pietramala, Multiple nonnegative solutions of systems with coupled nonlinear boundary conditions, Math. Methods Appl. Sci. 37 (2014), no. 14, 2080-2090. · Zbl 1312.34060
[48] G. Infante and P. Pietramala, Nonzero radial solutions for a class of elliptic systems with nonlocal BCs on annular domains, NoDEA Nonlinear Differential Equations Appl. 22 (2015), no. 4, 979-1003. · Zbl 1327.45004
[49] G. Infante, P. Pietramala and M. Tenuta, Existence and localization of positive solutions for a nonlocal BVP arising in chemical reactor theory, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), no. 7, 2245-2251. · Zbl 1457.34043
[50] T. Jankowski, Positive solutions to fractional differential equations involving Stieltjes integral conditions, Appl. Math. Comput. 241 (2014), 200-213. · Zbl 1334.34058
[51] G. L. Karakostas and P. C. Tsamatos, Existence of multiple positive solutions for a nonlocal boundary value problem, Topol. Methods Nonlinear Anal. 19 (2002), no. 1, 109-121. · Zbl 1071.34023
[52] G. L. Karakostas and P. C. Tsamatos, Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems, Electron. J. Differential Equations 2002 (2002), Paper No. 30. · Zbl 0998.45004
[53] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North Holland, New York, 2006. · Zbl 1092.45003
[54] K. Lan, Equivalence of higher order linear Riemann-Liouville fractional differential and integral equations, Proc. Amer. Math. Soc. 148 (2020), no. 12, 5225-5234. · Zbl 1455.34007
[55] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999. · Zbl 0918.34010
[56] C. Rosier and L. Rosier, On the global existence of solutions for a non-local problem occurring in statistical mechanics, Nonlinear Anal. 60 (2005), no. 8, 1509-1531. · Zbl 1065.35065
[57] S. G. Samko and R. P. Cardoso, Integral equations of the first kind of Sonine type, Int. J. Math. Math. Sci. 57 (2003), 3609-3632. · Zbl 1034.45007
[58] J. A. R. Santos Júnior and G. Siciliano, Positive solutions for a Kirchhoff problem with vanishing nonlocal term, J. Differential Equations 265 (2018), no. 5, 2034-2043. · Zbl 1394.35185
[59] R. Stańczy, Nonlocal elliptic equations, Nonlinear Anal. 47 (2001), 3579-3584. · Zbl 1042.35548
[60] V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods, SIAM J. Math. Anal. 47 (2015), no. 1, 210-239. · Zbl 1317.45006
[61] Y. Wang, F. Wang and Y. An, Existence and multiplicity of positive solutions for a nonlocal differential equation, Bound. Value Probl. 2011 (2011), 1-11. · Zbl 1274.34070
[62] J. R. L. Webb, Remarks on a non-local boundary value problem, Nonlinear Anal. 72 (2010), no. 2, 1075-1077. · Zbl 1186.34029
[63] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: A unified approach, J. Lond. Math. Soc. (2) 74 (2006), no. 3, 673-693. · Zbl 1115.34028
[64] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems involving integral conditions, NoDEA Nonlinear Differential Equations Appl. 15 (2008), no. 1-2, 45-67. · Zbl 1148.34021
[65] J. R. L. Webb and G. Infante, Non-local boundary value problems of arbitrary order, J. Lond. Math. Soc. (2) 79 (2009), no. 1, 238-258. · Zbl 1165.34010
[66] B. Yan and T. Ma, The existence and multiplicity of positive solutions for a class of nonlocal elliptic problems, Bound. Value Probl. 2016 (2016), Paper No. 165. · Zbl 1369.35024
[67] B. Yan and D. Wang, The multiplicity of positive solutions for a class of nonlocal elliptic problem, J. Math. Anal. Appl. 442 (2016), no. 1, 72-102. · Zbl 1344.35043
[68] Z. Yang, Positive solutions to a system of second-order nonlocal boundary value problems, Nonlinear Anal. 62 (2005), no. 7, 1251-1265. · Zbl 1089.34022
[69] Z. Yang, Positive solutions of a second-order integral boundary value problem, J. Math. Anal. Appl. 321 (2006), no. 2, 751-765. · Zbl 1106.34014
[70] Z. Yang, Positive solutions for a system of nonlinear Hammerstein integral equations and applications, Appl. Math. Comput. 218 (2012), no. 22, 11138-11150. · Zbl 1280.45005
[71] E. Zeidler, Nonlinear Functional Analysis and its Applications. I: Fixed-Point Theorems, Springer, New York, 1986. · Zbl 0583.47050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.