×

Entropic regularization of the discontinuous Galerkin method in conservative variables for two-dimensional Euler equations. (Russian. English summary) Zbl 1484.76038

Summary: The entropic regularization of the conservative stable discontinuous Galerkin method in conservative variables is constructed on the basis of a special slope limiter for the twodimensional Euler equations. This limiter ensures the fulfillment of the two-dimensional analogs of the monotonicity conditions and a discrete analog of the entropy inequality. The developed method was tested on two-dimensional model gas-dynamic problems.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)

Software:

FLEXI

References:

[1] E. Tadmor, “Entropy stable schemes”, Handbook of Numerical Analysis, 17, 2016, 467-493
[2] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Soc. Industr. and Appl. Math., Philadelphia, 1973, 59 pp. · Zbl 0268.35062
[3] S. Osher, “Riemann solvers, the entropy condition, and difference approximations”, SIAM J. Numer. Anal., 21 (1984), 217-235 · Zbl 0592.65069 · doi:10.1137/0721016
[4] F. Bouchut, C. Bourdarias, B. Perthame, “A MUSCL method satisfying all the numerical entropy inequalities”, Math. Comput., 65 (1996), 1439-1461 · Zbl 0853.65091 · doi:10.1090/S0025-5718-96-00752-1
[5] E. Tadmor, “Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems”, Acta Numerica, 2003, 451-512 · Zbl 1046.65078 · doi:10.1017/S0962492902000156
[6] F. Ismail, P. Roe, “Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks”, J. Comput. Phys., 228 (2009), 5410-5436 · Zbl 1280.76015 · doi:10.1016/j.jcp.2009.04.021
[7] P. Chandrashekar, “Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations”, Commun. Comput. Phys., 14:5 (2013), 1252-1286 · Zbl 1373.76121 · doi:10.4208/cicp.170712.010313a
[8] U. S. Fjordholm, S. Mishra, E. Tadmor, “Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws”, SIAM J. Numer. Anal., 50:2 (2012), 544-573 · Zbl 1252.65150 · doi:10.1137/110836961
[9] X. Cheng, Y. Nie, “A third-order entropy stable scheme for hyperbolic conservation laws”, J. Hyperbolic Differ. Equ., 13:1 (2016), 129-145 · Zbl 1341.65030 · doi:10.1142/S021989161650003X
[10] V. V. Ostapenko, “Symmetric compact schemes with higher order conservative artificial viscosities”, Comput. Math. Math. Phys., 7:1 (2002), 980-999 · Zbl 1077.65507
[11] A. A. Zlotnik, “Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations”, Comput. Math. Math. Phys., 57:4 (2017), 706-725 · Zbl 1457.76129 · doi:10.1134/S0965542517020166
[12] B. Cockburn, “An introduction to the discontinuous Galerkin method for convection-dominated Problems”, Lecture Notes in Mathematics, 1697, 1997, 150-268 · Zbl 0927.65120 · doi:10.1007/BFb0096353
[13] G. J. Gassner, A. R. Winters, D. A. Kopriva, “A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations”, Appl. Math. Comput., 272 (2016), 291-308 · Zbl 1410.65393
[14] N. Krais, A. Beck, T. Bolemann, H. Frank, D. Flad, G. J. Gassner, F. Hindenlang, M. Hoffmann, T. Kuhn, M. Sonntag, C. D. Munz, “FLEXI: A high order discontinuous Galerkin framework for hyperbolic-parabolic conservation laws”, Computers & Mathematics with Applications, 81 (2021), 186-219 · Zbl 1461.76347 · doi:10.1016/j.camwa.2020.05.004
[15] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Ispolzovanie usrednenii dlia sglazhivaniia reshenii v razryvnom metode Galerkina”, Keldysh Institute preprints, 2017, 089, 32 pp.
[16] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Impact of different limiting functions on the order of solution obtained by RKDG”, MM & CS, 5:4 (2013), 346-349 · Zbl 1313.76089
[17] M. E. Ladonkina, V. F. Tishkin, “Godunov method: a generalization using piece-wise polynomial approximations”, Differential Equations, 51:7 (2015), 895-903 · Zbl 1329.76180 · doi:10.1134/S0012266115070083
[18] M. E. Ladonkina, V. F. Tishkin, “On Godunov-type methods of high order of accuracy”, Doklady Mathematics, 91:2 (2015), 189-192 · Zbl 1319.76028 · doi:10.1134/S1064562415020222
[19] V. F. Tishkin, V. T. Zhukov, E. E. Myshetskaya, “Justification of Godunov-s scheme in the multidimensional case”, MM & CS, 8:5 (2016), 548-556 · Zbl 1363.76060
[20] Y. A. Kriksin, V. F. Tishkin, “Entropiinaia reguliarizastiia razryvnogo metoda Galerkina v odnomernykh zadachakh gazovoi dinamiki”, Keldysh Institute preprints, 2018, 100, 22 pp.
[21] M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Verification of an entropic regularization method for discontinuous Galerkin schemes applied to hyperbolic equations”, Keldysh Institute preprints, 2019, 018, 25 pp.
[22] M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Discontinuous Galerkin Method with an Entropic Slope Limiter for Euler Equations”, Mathematical Models and Computer Simulations, 12:5 (2020), 824-833 · Zbl 1444.76068 · doi:10.1134/S2070048220050038
[23] Y. A. Kriksin, V. F. Tishkin, “Chislennoe reshenie zadachi Einfeldta na osnove razryvnogo metoda Galerkina”, Keldysh Institute preprints, 2019, 090, 22 pp.
[24] Y. A. Kriksin, V. F. Tishkin, “Entropy-Stable Discontinuous Galerkin Method for Euler Equations Using Nonconservative Variables”, Mathematical Models and Computer Simulations, 13:3 (2021), 416-425 · Zbl 1456.76073 · doi:10.1134/S2070048221030091
[25] M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Entropy-Stable Discontinuous Galerkin Method for Two-Dimensional Euler Equations”, Mathematical Models and Computer Simulations, 13:5 (2021), 897-906 · Zbl 1461.76344 · doi:10.1134/S2070048221050069
[26] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, G. P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp.
[27] R. Liska, B. Wendroff, “Comparison of several difference schemes on 1D and 2D test problems for the Euler equations”, SIAM J. Sci. Comput., 25:3, 995-1017 · Zbl 1096.65089 · doi:10.1137/S1064827502402120
[28] M. D. Bragin, B. V. Rogov, “Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations”, Appl. Numer. Math., 151 (2020), 229-245 · Zbl 1434.65176 · doi:10.1016/j.apnum.2020.01.005
[29] M. D. Bragin, “Entropy stability of bicompact schemes in gas dynamics problems”, Mathematical Models and Computer Simulations, 13:4 (2021), 613-622 · Zbl 1455.76106 · doi:10.1134/S2070048221040086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.