×

Gravity with torsion as deformed \(BF\) theory. (English) Zbl 07882225

Summary: We study a family of (possibly non topological) deformations of \(BF\) theory for the Lie algebra obtained by quadratic extension of \(\mathfrak{so}(3, 1)\) by an orthogonal module. The resulting theory, called quadratically extended General Relativity (qeGR), is shown to be classically equivalent to certain models of gravity with dynamical torsion. The classical equivalence is shown to promote to a stronger notion of equivalence within the Batalin-Vilkovisky formalism [[I. A. Batalin and G. A. Vilkovisky, Phys. Lett. B 69, No. 3, 309–312 (1977; 10.1016/0370-2693(77)90553-6 )]. In particular, both Palatini-Cartan gravity and a deformation thereof by a dynamical torsion term, called (quadratic) generalised Holst theory, are recovered from the standard Batalin-Vilkovisky formulation of qeGR by elimination of generalised auxiliary fields.
{© 2024 The Author(s). Published by IOP Publishing Ltd}

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories

References:

[1] Aleksandrov, M.; Kontsevich, M.; Schwarz, A.; Zaboronsky, O., The geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys. A, 12, 1405-30, 1997 · Zbl 1073.81655 · doi:10.1142/S0217751X97001031
[2] Anderson, I M1989The variational bicomplexTechnical ReportUtah State Technical Report
[3] Arcos, H. I.; Pereira, J. G., Torsion gravity: a reappraisal, Int. J. Mod. Phys. D, 13, 2193-240, 2004 · Zbl 1082.83029 · doi:10.1142/S0218271804006462
[4] Barnich, G.; Grigoriev, M.; Semikhatov, A.; Tipunin, I., Parent field theory and unfolding in BRST first-quantized terms, Commun. Math. Phys., 260, 147-81, 2005 · Zbl 1094.81048 · doi:10.1007/s00220-005-1408-4
[5] Barnich, G.; Brandt, F.; Henneaux, M., Local BRST cohomology in the antifield formalism: I. General theorems, Commun. Math. Phys., 174, 57-91, 1995 · Zbl 0844.53059 · doi:10.1007/BF02099464
[6] Barnich, G.; Grigoriev, M., First order parent formulation for generic gauge field theories, J. High Energy Phys., JHEP01(2011)122, 2011 · Zbl 1214.81278 · doi:10.1007/JHEP01(2011)122
[7] Batalin, I. A.; Fradkin, E. S., A generalized canonical formalism and quantization of reducible gauge theories, Phys. Lett. B, 122, 157-64, 1983 · Zbl 0967.81508 · doi:10.1016/0370-2693(83)90784-0
[8] Batalin, I. A.; Vilkovisky, G. A., Relativistic S-matrix of dynamical systems with boson and fermion constraints, Phys. Lett. B, 69, 309-12, 1977 · doi:10.1016/0370-2693(77)90553-6
[9] Batalin, I. A.; Vilkovisky, G. A., Gauge algebra and quantization, Phys. Lett. B, 102, 27-31, 1981 · doi:10.1016/0370-2693(81)90205-7
[10] Blohmann, C., Lagrangian Field Theory, 2021, Max Planck Institute for Mathematics
[11] Brandt, F., Gauge covariant algebras and local BRST cohomology, Contemporary Mathematics, vol 219, pp 53-67, 1999 · Zbl 0926.53036
[12] Canepa, G.; Cattaneo, A. S.; Schiavina, M., Boundary structure of general relativity in tetrad variables, Adv. Theor. Math. Phys., 25, 327-77, 2021 · Zbl 1487.83026 · doi:10.4310/ATMP.2021.v25.n2.a3
[13] Canepa, G.; Cattaneo, A. S.; Schiavina, M., General relativity and the AKSZ construction, Commun. Math. Phys., 385, 1571-614, 2021 · Zbl 1470.81055 · doi:10.1007/s00220-021-04127-6
[14] Canepa, G.; Cattaneo, A. S.; Tecchiolli, M., Gravitational constraints on a lightlike boundary, Ann. Henri Poincare, 22, 3149-98, 2021 · Zbl 1508.83024 · doi:10.1007/s00023-021-01038-z
[15] Canepa, G.; Schiavina, M., Fully extended BV-BFV description of general relativity in three dimensions, Adv. Theor. Math. Phys, 26, 595-642, 2022 · Zbl 1520.83024 · doi:10.4310/ATMP.2022.v26.n3.a2
[16] Capovilla, R.; Dell, J.; Jacobson, T.; Mason, L., Self-dual 2-forms and gravity, Class. Quantum Grav., 8, 41, 1991 · Zbl 0716.53066 · doi:10.1088/0264-9381/8/1/009
[17] Carlip, S., Quantum Gravity in 2+1 Dimensions (Cambridge Monographs on Mathematical Physics), 1998, Cambridge University Press · Zbl 0919.53024
[18] Carroll, S. M.; Remmen, G. N., What is the entropy in entropic gravity?, Phys. Rev. D, 93, 12, 2016 · doi:10.1103/PhysRevD.93.124052
[19] Cattaneo, A. S.; Cotta-Ramusino, P.; Fucito, F.; Martellini, M.; Rinaldi, M.; Tanzini, A.; Zeni, M., Four-dimensional Yang-Mills theory as a deformation of topological BF theory, Commun. Math. Phys., 197, 571-621, 1998 · Zbl 0927.58023 · doi:10.1007/s002200050465
[20] Cattaneo, A. S.; Schiavina, M., BV-BFV approach to general relativity: Palatini-Cartan-Holst action, Adv. Theor. Math. Phys., 23, 2025-59, 2019 · Zbl 07432488 · doi:10.4310/ATMP.2019.v23.n8.a3
[21] Cattaneo, A. S.; Schiavina, M.; Selliah, I., BV equivalence between triadic gravity and BF theory in three dimensions, Lett. Math. Phys., 108, 1873-84, 2018 · Zbl 1393.83017 · doi:10.1007/s11005-018-1060-5
[22] Cattaneo, A. S.; Mnev, P.; Reshetikhin, N., Classical BV theories on manifolds with boundary, Commun. Math. Phys., 332, 535-603, 2014 · Zbl 1302.81141 · doi:10.1007/s00220-014-2145-3
[23] Cattaneo, A. S.; Mnev, P.; Reshetikhin, N., Perturbative quantum gauge theories on manifolds with boundary, Commun. Math. Phys., 357, 631-730, 2017 · Zbl 1390.81381 · doi:10.1007/s00220-017-3031-6
[24] Cattaneo, A. S.; Mnev, P.; Reshetikhin, N., A cellular topological field theory, Commun. Math. Phys., 374, 1229-320, 2020 · Zbl 1514.81235 · doi:10.1007/s00220-020-03687-3
[25] Cattaneo, A. S.; Mnev, P.; Reshetikhin, N., Classical and quantum lagrangian field theories with boundary, 2012, Sissa Medialab
[26] Cattaneo, A. S.; Mnev, P.; Wernli, K., Constrained systems, generalized Hamilton-Jacobi actions and quantization, J. Geom. Mech., 14, 179-272, 2022 · Zbl 1496.14015 · doi:10.3934/jgm.2022010
[27] Cattaneo, A. S.; Moshayedi, N., Introduction to the BV-BFV formalism, Rev. Math. Phys., 32, 2020 · Zbl 1453.81056 · doi:10.1142/S0129055X2030006X
[28] Cattaneo, A. S.; Rossi, C. A., Higher-dimensional BF theories in the Batalin-Vilkovisky formalism: the BV action and generalized Wilson loops, Commun. Math. Phys., 221, 591-657, 2001 · Zbl 1009.81071 · doi:10.1007/s002200100484
[29] Cattaneo, A. S.; Schiavina, M., The reduced phase space of Palatini-Cartan-Holst theory, Ann. Henri Poincare, 20, 445-80, 2018 · Zbl 1411.83009 · doi:10.1007/s00023-018-0733-z
[30] Celada, M.; González, D.; Montesinos, M., BF gravity, Class. Quantum Grav., 33, 2016 · Zbl 1351.83041 · doi:10.1088/0264-9381/33/21/213001
[31] Chatzistavrakidis, A.; Karagiannis, G.; Manolakos, G.; Schupp, P., Axion gravitodynamics, Lense-Thirring effect and gravitational waves, Phys. Rev. D, 105, 2022 · doi:10.1103/PhysRevD.105.104029
[32] Chatzistavrakidis, A.; Karagiannis, G.; Schupp, P., Torsion-induced gravitational θ term and gravitoelectromagnetism, Eur. Phys. J. C, 80, 1034, 2020 · doi:10.1140/epjc/s10052-020-08600-9
[33] Cubero, J. L.; Poplawski, N. J., Analysis of big bounce in Einstein-Cartan cosmology, Class. Quantum Grav., 37, 2019 · Zbl 1478.83242 · doi:10.1088/1361-6382/ab5cb9
[34] Deligne, P.; Etingof, P.; Freed, D. S.; Jeffrey, L. C.; Kazhdan, D.; Morgan, J. W.; Morrison, D. R.; Witten, E., Quantum Fields and Strings: A Course for Mathematicians, vol 1, 1999, American Mathematical Society · Zbl 0984.00503
[35] Diether III, C. F.; Christian, J., On the role of Einstein-Cartan gravity in fundamental particle physics, Universe, 6, 112, 2020 · doi:10.3390/universe6080112
[36] Dirac, P. A M., The theory of gravitation in Hamiltonian form, Proc. R. Soc. A, 246, 333-43, 1958 · Zbl 0080.41403 · doi:10.1098/rspa.1958.0142
[37] Dupuis, M.; Livine, E. R., Revisiting the simplicity constraints and coherent intertwiners, Class. Quantum Grav., 28, 2011 · Zbl 1213.83065 · doi:10.1088/0264-9381/28/8/085001
[38] Ferraris, M.; Francaviglia, M.; Reina, C., Variational formulation of general relativity from 1915 to 1925 “Palatini’s method” discovered by Einstein in 1925, Gen. Relativ. Gravit., 14, 243-54, 1982 · Zbl 0541.49019 · doi:10.1007/BF00756060
[39] Freidel, L.; Speziale, S., On the relations between gravity and BF theories, SIGMA, 8, 32, 2012 · Zbl 1242.83040 · doi:10.3842/SIGMA.2012.032
[40] Freidel, LStarodubtsev, A2005Quantum gravity in terms of topological observables · doi:10.48550/arXiv.hep-th/0501191
[41] Geiger, L2022Quadratically extended BF theory in the BV formalism
[42] Giachetta, G.; Mangiarotti, L., Constrained Hamiltonian systems and gauge theories, Int. J. Theor. Phys., 34, 2353-71, 1995 · Zbl 0843.58132 · doi:10.1007/BF00670772
[43] Grigoriev, M., Parent formulation at the Lagrangian level, J. High Energy Phys., JHEP07(2011)061, 2011 · Zbl 1298.81346 · doi:10.1007/JHEP07(2011)061
[44] Hadfield, C.; Kandel, S.; Schiavina, M., Ruelle zeta function from field theory, Ann. Henri Poincare, 21, 3835-67, 2020 · Zbl 1473.37028 · doi:10.1007/s00023-020-00964-8
[45] Hammond, R. T., Torsion gravity, Rep. Prog. Phys., 65, 599-649, 2002 · doi:10.1088/0034-4885/65/5/201
[46] Hehl, F. W.; Heyde, P.; Kerlick, G. D.; Nester, J. M., General relativity with spin and torsion: foundations and prospects, Rev. Mod. Phys., 48, 393-416, 1976 · Zbl 1371.83017 · doi:10.1103/RevModPhys.48.393
[47] Henneaux, M., Elimination of the auxiliary fields in the antifield formalism, Phys. Lett. B, 238, 299-304, 1990 · Zbl 1332.81231 · doi:10.1016/0370-2693(90)91739-X
[48] Henneaux, M.; Teitelboim, C., Quantization of Gauge Systems, 1992, Princeton University Press · Zbl 0838.53053
[49] Hilbert, D., Die Grundlagen der Physik. (Erste Mitteilung.), Nachr. Ges. Wiss. Gott. Math.-Phys. Klasse, 1915, 395-408, 1915 · JFM 45.1111.01
[50] Hohmann, M.; Jarv, L.; Krssak, M.; Pfeifer, C., Teleparallel theories of gravity as analogue of nonlinear electrodynamics, Phys. Rev. D, 97, 2018 · doi:10.1103/PhysRevD.97.104042
[51] Ivanov, A. N.; Wellenzohn, M., Einstein-Cartan gravity with torsion field serving as origin for cosmological constant or dark energy density, Astrophys. J., 829, 47, 2016 · doi:10.3847/0004-637X/829/1/47
[52] Kath, I.; Olbrich, M., Metric Lie algebras and quadratic extensions, Trans. Groups, 11, 87-131, 2006 · Zbl 1112.17006 · doi:10.1007/s00031-005-1106-5
[53] Kath, I.; Olbrich, M., The classification problem for pseudo-Riemannian symmetric spaces, Recent Developments in Pseudo-Riemannian Geometry, COLLECTED VOLUME, 1-55, 2007 · doi:10.4171/051-1/1
[54] Kijowski, J.; Tulczyjew., W. M., Symplectic Framework for Field Theories (Lecture Notes Physics), vol 107, 1979 · Zbl 0439.58002
[55] Krasnov, K.; Percacci, R., Gravity and unification: a review, Class. Quantum Grav., 35, 2018 · Zbl 1409.83154 · doi:10.1088/1361-6382/aac58d
[56] Krasnov, K., Pure connection action principle for general relativity, Phys. Rev. Lett., 106, 2011 · doi:10.1103/PhysRevLett.106.251103
[57] Krasnov, K., Formulations of General Relativity: Gravity, Spinors and Differential Forms (Cambridge Monographs on Mathematical Physics), 2020, Cambridge University Press · Zbl 1451.83001
[58] Lee, J. M., Introduction to Riemannian Manifolds (Graduate Texts in Mathematics), 2019, Springer International Publishing
[59] MacDowell, S. W.; Mansouri, F., Unified geometric theory of gravity and supergravity, Phys. Rev. Lett., 38, 739-42, 1977 · doi:10.1103/PhysRevLett.38.739
[60] Mégier, E. A S., Square-torsion gravity, dark matter halos and the baryonic Tully-Fisher relation, Eur. Phys. J. C, 80, 1157, 2020 · doi:10.1140/epjc/s10052-020-08686-1
[61] Mikovic, A., Quantum gravity as a broken symmetry phase of a BF theory, SIGMA, 2, 086, 2006 · Zbl 1188.83041 · doi:10.3842/SIGMA.2006.086
[62] Mnev, P., Discrete BF theory, 2008
[63] Mnev, P., Lectures on Batalin-Vilkovisky Formalism and its Applications in Topological Quantum Field Theory, 2019, American Mathematical Society · Zbl 1485.81003
[64] Mnev, P.; Schiavina, M.; Wernli, K., Towards holography in the BV-BFV setting, Ann. Henri Poincare, 21, 993-1044, 2019 · Zbl 1433.81120 · doi:10.1007/s00023-019-00862-8
[65] Moshayedi, N., Quantum field theoretic approach to deformation quantization, Kontsevich’s Deformation Quantization and Quantum Field Theory, pp 233-320, 2022 · Zbl 1504.53003 · doi:10.1007/978-3-031-05122-7
[66] Peldan, P., Actions for gravity, with generalizations: a title, Class. Quantum Grav., 11, 1087-132, 1994 · doi:10.1088/0264-9381/11/5/003
[67] Plebański, J. F., On the separation of Einsteinian substructures, J. Math. Phys., 18, 2511-20, 1977 · Zbl 0368.53032 · doi:10.1063/1.523215
[68] Poplawski, N., Intrinsic spin requires gravity with torsion and curvature, 2013
[69] Poplawski, N. J., Big bounce from spin and torsion, Gen. Relativ. Gravit., 44, 1007-14, 2012 · Zbl 1238.83042 · doi:10.1007/s10714-011-1323-2
[70] Poplawski, N. J., Cosmological consequences of gravity with spin and torsion, Astron. Rev., 8, 108-15, 2013 · doi:10.1080/21672857.2013.11519725
[71] Rejzner, K.; Schiavina, M., Asymptotic symmetries in the BV-BFV formalism, Commun. Math. Phys., 385, 1083-132, 2021 · Zbl 1470.81051 · doi:10.1007/s00220-021-04061-7
[72] Rejzner, K2011Batalin-Vilkovisky formalism in locally covariant field theoryPhD Thesis · doi:10.48550/arXiv.1111.5130
[73] Rezende, D. J.; Perez, A., Four-dimensional Lorentzian Holst action with topological terms, Phys. Rev. D, 79, 2009 · doi:10.1103/PhysRevD.79.064026
[74] Rovelli, C.; Speziale, S., On the expansion of a quantum field theory around a topological sector, Gen. Relativ. Gravit., 39, 167-78, 2006 · Zbl 1157.83325 · doi:10.1007/s10714-006-0378-y
[75] Sá, N. B E., Hamiltonian analysis of general relativity with the immirzi parameter, Int. J. Mod. Phys. D, 10, 261-72, 2001 · Zbl 1155.83312 · doi:10.1142/S0218271801000858
[76] Scarpa, R., Modified newtonian dynamics, an introductory review, AIP Conf. Proc., 822, 253-65, 2006 · doi:10.1063/1.2189141
[77] Schwarz, A., Topological quantum field theories, 2000
[78] Simão, F. M C.; Cattaneo, A. S.; Schiavina, M., BV equivalence with boundary, Lett. Math. Phys., 113, 25, 2023 · Zbl 1515.81201 · doi:10.1007/s11005-023-01646-2
[79] Stasheff, J1997The (secret?) homological algebra of the Batalin-Vilkovisky approach · doi:10.48550/arXiv.hep-th/9712157
[80] Tecchiolli, M., On the mathematics of coframe formalism and Einstein-Cartan theory-a brief review, Universe, 5, 206, 2019 · doi:10.3390/universe5100206
[81] Urbantke, H., On integrability properties of SU (2) Yang-Mills fields. I. Infinitesimal part, J. Math. Phys., 25, 2321-4, 1984 · doi:10.1063/1.526402
[82] Witten, E., 2 + 1 dimensional gravity as an exactly soluble system, Nucl. Phys. B, 311, 46-78, 1988 · Zbl 1258.83032 · doi:10.1016/0550-3213(88)90143-5
[83] Zuckerman, G. J., Action principles and global geometry, Mathematical Aspects of String Theory, pp 259-84, 1987 · Zbl 0669.58014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.