×

Caustics of pseudo-spherical surfaces in the Euclidean 3-space. (English) Zbl 1536.53018

The author studies geometric properties of caustics of pseudo-spherical surfaces, that is, surfaces with constant negative Gaussian curvature \(-1\) in the Euclidean \(3\)-space \(\mathbb R^3\). First, he recalls some properties of fronts and their singularities, the notion of sine-Gordon equation which determines pseudo-spherical surfaces, discusses the notion of moving frames and frame equation, singularities of pseudo-spherical fronts and singularities of caustics of such fronts, Gaussian curvature and mean curvature of the caustics and so on. Among other things, he characterizes singularities of pseudo-spherical fronts and their caustics and also obtains explicit descriptions for the Gaussian and mean curvature in terms of the solution of the sine-Gordon equation under certain conditions. Above all, the author formulates a specific condition under which caustics of pseudo-spherical fronts become minimal surfaces, and then identifies a class of such pseudo-spherical fronts. In conclusion, he demonstrates an isometric deformation from the catenoid to the helicoid via a family of caustics of Dini surfaces with certain parametrizations using a series of nice pictures (see also [C.-L. Terng and K. Uhlenbeck, Notices Am. Math. Soc. 47, No. 1, 17–25 (2000; Zbl 0987.37072); M. Takahashi and the author, Bull. Braz. Math. Soc. (N.S.) 51, No. 4, 887–914 (2020; Zbl 1475.57041)]).

MSC:

53A05 Surfaces in Euclidean and related spaces
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
58J72 Correspondences and other transformation methods (e.g., Lie-Bäcklund) for PDEs on manifolds
57R45 Singularities of differentiable mappings in differential topology

Software:

SingSurf
Full Text: DOI

References:

[1] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps. Volume 1. Classification of Critical Points, Caustics and Wave Fronts, Mod. Birkhäuser Class., Birkhäuser/Springer, New York, 2012. · Zbl 1290.58001
[2] D. Brander, Pseudospherical surfaces with singularities, Ann. Mat. Pura Appl. (4) 196 (2017), no. 3, 905-928. · Zbl 1371.53003
[3] D. Brander and F. Tari, Wave maps and constant curvature surfaces: singularities and bifurcations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 23 (2022), no. 1, 361-397. · Zbl 1503.53034
[4] J. W. Bruce and T. C. Wilkinson, Folding maps and focal sets, Singularity Theory and its Applications, Part I (Coventry 1988/1989), Lecture Notes in Math. 1462, Springer, Berlin (1991), 63-72. · Zbl 0733.58002
[5] S. S. Chern and C. L. Terng, An analogue of Bäcklund’s theorem in affine geometry, Rocky Mountain J. Math. 10 (1980), no. 1, 105-124. · Zbl 0407.53002
[6] L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Dover, New York, 1960. · JFM 40.0626.02
[7] S. Fujimori, K. Saji, M. Umehara and K. Yamada, Singularities of maximal surfaces, Math. Z. 259 (2008), no. 4, 827-848. · Zbl 1145.57026
[8] T. Fukunaga and M. Takahashi, Framed surfaces in the Euclidean space, Bull. Braz. Math. Soc. (N. S.) 50 (2019), no. 1, 37-65. · Zbl 1425.58021
[9] C. Goulart and K. Tenenblat, On Bäcklund and Ribaucour transformations for surfaces with constant negative curvature, Geom. Dedicata 181 (2016), 83-102. · Zbl 1360.53013
[10] D. Hilbert, Ueber Flächen von constanter Gaussscher Krümmung, Trans. Amer. Math. Soc. 2 (1901), no. 1, 87-99. · JFM 32.0608.01
[11] H. Hopf, Differential Geometry in the Large, 2nd ed., Lecture Notes in Math. 1000, Springer, Berlin, 1989. · Zbl 0669.53001
[12] G.-O. Ishikawa and Y. Machida, Singularities of improper affine spheres and surfaces of constant Gaussian curvature, Internat. J. Math. 17 (2006), no. 3, 269-293. · Zbl 1093.53067
[13] S. Izumiya, M. D. C. Romero Fuster, M. A. S. Ruas and F. Tari, Differential Geometry from a Singularity Theory Viewpoint, World Scientific, Hackensack, 2016. · Zbl 1369.53004
[14] S. Izumiya and K. Saji, The mandala of Legendrian dualities for pseudo-spheres in Lorentz-Minkowski space and “flat” spacelike surfaces, J. Singul. 2 (2010), 92-127. · Zbl 1292.53009
[15] S. Izumiya, K. Saji and M. Takahashi, Horospherical flat surfaces in hyperbolic 3-space, J. Math. Soc. Japan 62 (2010), no. 3, 789-849. · Zbl 1205.53065
[16] S. Izumiya, K. Saji and N. Takeuchi, Singularities of line congruences, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 6, 1341-1359. · Zbl 1053.53007
[17] M. Kokubu, W. Rossman, K. Saji, M. Umehara and K. Yamada, Singularities of flat fronts in hyperbolic space, Pacific J. Math. 221 (2005), no. 2, 303-351. · Zbl 1110.53044
[18] L. F. Martins, K. Saji, M. Umehara and K. Yamada, Behavior of Gaussian curvature and mean curvature near non-degenerate singular points on wave fronts, Geometry and Topology of Manifolds, Springer Proc. Math. Stat. 154, Springer, Tokyo (2016), 247-281. · Zbl 1347.53044
[19] M. Melko and I. Sterling, Application of soliton theory to the construction of pseudospherical surfaces in \(\mathbf{R}}^{3\), Ann. Global Anal. Geom. 11 (1993), no. 1, 65-107. · Zbl 0810.53003
[20] R. Morris, The sub-parabolic lines of a surface, The mathematics of Surfaces, VI (Uxbridge 1994), Inst. Math. Appl. Conf. Ser. New Ser. 58, Oxford University, New York (1996), 79-102. · Zbl 0960.53006
[21] S. Murata and M. Umehara, Flat surfaces with singularities in Euclidean 3-space, J. Differential Geom. 82 (2009), no. 2, 279-316. · Zbl 1184.53015
[22] R. S. Palais and C.-L. Terng, Critical Point Theory and Submanifold Geometry, Lecture Notes in Math. 1353, Springer, Berlin, 1988. · Zbl 0658.49001
[23] K. Saji, Criteria for cuspidal S_k singularities and their applications, J. Gökova Geom. Topol. GGT 4 (2010), 67-81. · Zbl 1267.58023
[24] K. Saji, Criteria for D_4 singularities of wave fronts, Tohoku Math. J. (2) 63 (2011), no. 1, 137-147. · Zbl 1233.57017
[25] K. Saji and K. Teramoto, Behavior of principal curvatures of frontals near non-front singular points and their applications, J. Geom. 112 (2021), no. 3, Paper No. 39. · Zbl 1487.57041
[26] K. Saji, M. Umehara and K. Yamada, A_k singularities of wave fronts, Math. Proc. Cambridge Philos. Soc. 146 (2009), no. 3, 731-746. · Zbl 1173.53039
[27] K. Saji, M. Umehara and K. Yamada, The geometry of fronts, Ann. of Math. (2) 169 (2009), no. 2, 491-529. · Zbl 1177.53014
[28] K. Saji, M. Umehara and K. Yamada, A_2-singularities of hypersurfaces with non-negative sectional curvature in Euclidean space, Kodai Math. J. 34 (2011), no. 3, 390-409. · Zbl 1272.57022
[29] K. Saji, M. Umehara and K. Yamada, Coherent tangent bundles and Gauss-Bonnet formulas for wave fronts, J. Geom. Anal. 22 (2012), no. 2, 383-409. · Zbl 1276.57032
[30] R. Sasaki, Soliton equations and pseudospherical surfaces, Nuclear Phys. B 154 (1979), no. 2, 343-357.
[31] M. D. Shepherd, Line congruences as surfaces in the space of lines, Differential Geom. Appl. 10 (1999), no. 1, 1-26. · Zbl 0953.53012
[32] M. Takahashi and K. Teramoto, Surfaces of revolution of frontals in the Euclidean space, Bull. Braz. Math. Soc. (N. S.) 51 (2020), no. 4, 887-914. · Zbl 1475.57041
[33] T. A. M. Tejeda, Extendibility and boundedness of invariants on singularities of wavefronts, preprint (2020), https://arxiv.org/abs/2011.09511.
[34] K. Teramoto, Focal surfaces of wave fronts in the Euclidean 3-space, Glasg. Math. J. 61 (2019), no. 2, 425-440. · Zbl 1429.57028
[35] K. Teramoto, Principal curvatures and parallel surfaces of wave fronts, Adv. Geom. 19 (2019), no. 4, 541-554. · Zbl 1439.57051
[36] K. Teramoto, Focal surfaces of fronts associated to unbounded principal curvatures, preprint (2022), https://arxiv.org/abs/2210.06221; to appear in Rocky Mountain J. Math.
[37] C.-L. Terng and K. Uhlenbeck, Geometry of solitons, Notices Amer. Math. Soc. 47 (2000), no. 1, 17-25. · Zbl 0987.37072
[38] T. Ura, Constant negative Gaussian curvature tori and their singularities, Tsukuba J. Math. 42 (2018), no. 1, 65-95. · Zbl 1498.53006
[39] R. C. Yates, A Handbook on Curves and Their Properties, J. W. Edwards, Ann Arbor, 1947.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.