×

Local geometric invariants of integrable evolution equations. (English) Zbl 0801.58021

Summary: The integrable hierarchy of commuting vector fields for the localized induction equation of 3D hydrodynamics, and its associated recursion operator, are used to generate families of integrable evolution equations which preserve local geometric invariants of the evolving curve or swept- out surface.

MSC:

37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q55 NLS equations (nonlinear Schrödinger equations)
35Q51 Soliton equations

References:

[1] DOI: 10.1103/PhysRevLett.15.240 · Zbl 1201.35174 · doi:10.1103/PhysRevLett.15.240
[2] DOI: 10.1103/PhysRevLett.19.1095 · doi:10.1103/PhysRevLett.19.1095
[3] DOI: 10.1143/JPSJ.33.805 · doi:10.1143/JPSJ.33.805
[4] Belinskii V. A., Sov. Phys. JETP 48 pp 985– (1978)
[5] DOI: 10.1007/BF01329410 · doi:10.1007/BF01329410
[6] DOI: 10.1016/0029-5582(62)90774-5 · Zbl 0106.20105 · doi:10.1016/0029-5582(62)90774-5
[7] DOI: 10.1103/PhysRevLett.18.908 · doi:10.1103/PhysRevLett.18.908
[8] DOI: 10.1103/PhysRevLett.37.235 · doi:10.1103/PhysRevLett.37.235
[9] DOI: 10.1063/1.524273 · Zbl 0416.70016 · doi:10.1063/1.524273
[10] DOI: 10.1063/1.524387 · Zbl 0456.35082 · doi:10.1063/1.524387
[11] DOI: 10.1103/PhysRevLett.57.1507 · doi:10.1103/PhysRevLett.57.1507
[12] DOI: 10.1103/PhysRevLett.67.3203 · Zbl 0990.37519 · doi:10.1103/PhysRevLett.67.3203
[13] DOI: 10.1103/PhysRevLett.69.2603 · Zbl 0968.53500 · doi:10.1103/PhysRevLett.69.2603
[14] DOI: 10.1038/352561a0 · doi:10.1038/352561a0
[15] DOI: 10.1098/rsta.1972.0055 · Zbl 0247.76015 · doi:10.1098/rsta.1972.0055
[16] DOI: 10.1016/0167-2789(91)90151-X · Zbl 0738.35063 · doi:10.1016/0167-2789(91)90151-X
[17] DOI: 10.1016/0375-9601(77)90262-6 · doi:10.1016/0375-9601(77)90262-6
[18] DOI: 10.1017/S0022112072002307 · Zbl 0237.76010 · doi:10.1017/S0022112072002307
[19] DOI: 10.1016/0167-2789(83)90134-3 · doi:10.1016/0167-2789(83)90134-3
[20] DOI: 10.1007/BF01209148 · Zbl 0795.35115 · doi:10.1007/BF01209148
[21] DOI: 10.1143/JPSJ.55.4152 · doi:10.1143/JPSJ.55.4152
[22] DOI: 10.1103/PhysRevLett.69.555 · Zbl 0968.76527 · doi:10.1103/PhysRevLett.69.555
[23] DOI: 10.1112/jlms/s2-30.3.512 · Zbl 0595.53001 · doi:10.1112/jlms/s2-30.3.512
[24] Langer J., J. Diff. Geom 20 pp 1– (1984)
[25] Chern S. S., J. Diff. Geom 16 pp 347– (1981)
[26] DOI: 10.1007/BF01443311 · doi:10.1007/BF01443311
[27] DOI: 10.1007/BF00773365 · Zbl 0810.53003 · doi:10.1007/BF00773365
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.