×

Time varying mixed effects model with fused Lasso regularization. (English) Zbl 1521.62542

Summary: The associations between covariates and the outcomes often vary over time, regardless of whether the covariate is time-varying or time-invariant. For example, we hypothesize that the impact of chronic diseases, such as diabetes and heart disease, on people’s physical functions differ with aging. However, the age-varying effect would be missed if one models the covariate simply as a time-invariant covariate (yes/no) with a time-constant coefficient. We propose a fused lasso-based time-varying linear mixed effect (FTLME) model and an efficient two-stage parameter estimation algorithm to estimate the longitudinal trajectories of fixed-effect coefficients. Simulation studies are presented to demonstrate the efficacy of the method and its computational efficiency in estimating smooth time-varying effects in high dimensional settings. A real data example on the Health and Retirement Study (HRS) analysis is used to demonstrate the practical usage of our method to infer age-varying impact of chronic disease on older people’s physical functions.

MSC:

62-XX Statistics

References:

[1] Adelfio, G.; Boscaino, G., Degree course change and student performance: A mixed-effect model approach, J. Appl. Stat., 43, 3-15 (2016) · Zbl 1514.62380 · doi:10.1080/02664763.2015.1018673
[2] Adhikari, S.; Lecci, F.; Becker, J. T.; Junker, B. W.; Kuller, L. H.; Lopez, O. L.; Tibshirani, R. J., High-dimensional longitudinal classification with the multinomial fused lasso, Stat. Med., 38, 2184-2205 (2019) · doi:10.1002/sim.8100
[3] Arnold, T. B.; Tibshirani, R. J., Efficient implementations of the generalized lasso dual path algorithm, J. Comput. Graph. Stat., 25, 1-27 (2016) · doi:10.1080/10618600.2015.1008638
[4] Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., and Song, L., Recurrent marked temporal point processes: Embedding event history to vector, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1555-1564.
[5] Efron, B.; Tibshirani, R. J., An Introduction to the Bootstrap (1994), Chapman & Hall: Chapman & Hall, New York
[6] Fan, J.; Huang, T.; Li, R., Analysis of longitudinal data with semiparametric estimation of covariance function, J. Am. Stat. Assoc., 102, 632-641 (2007) · Zbl 1172.62323 · doi:10.1198/016214507000000095
[7] Heeringa, S. G.; Connor, J. H., Technical Description of the Health and Retirement Survey Sample Design: HRS/AHEAD Documentation Report DR-002 (1995), University of Michigan: University of Michigan, Ann Arbor, MI
[8] Huang, J. Z.; Wu, C. O.; Zhou, L., Varying-coefficient models and basis function approximations for the analysis of repeated measurements, Biometrika, 89, 111-128 (2002) · Zbl 0998.62024 · doi:10.1093/biomet/89.1.111
[9] Kang, H.; Chen, F.; Li, Y.; Deng, J.; Yang, Z., Knot calculation for spline fitting via sparse optimization, Comput-Aided Des., 58, 179-188 (2015) · doi:10.1016/j.cad.2014.08.022
[10] Laird, N. M.; Ware, J. H., Random-effects models for longitudinal data, Biometrics, 38, 963-974 (1982) · Zbl 0512.62107 · doi:10.2307/2529876
[11] Lin, H.; Xu, W.; Zhang, R.; Shi, J.; Wang, Y., Multiple-index varying-coefficient models for longitudinal data, J. Appl. Stat., 44, 1960-1978 (2017) · Zbl 1516.62419 · doi:10.1080/02664763.2016.1238052
[12] Martella, F.; Vermunt, J. K.; Beekman, M.; Westendorp, R. G.J.; Slagboom, P. E.; Houwing-Duistermaat, J. J., A mixture model with random-effects components for classifying sibling pairs, Stat. Med., 30, 3252-3264 (2011) · doi:10.1002/sim.4365
[13] Ni, X.; Zhang, D.; Zhang, H. H., Variable selection for semiparametric mixed models in longitudinal studies, Biometrics, 66, 79-88 (2010) · Zbl 1187.62075 · doi:10.1111/j.1541-0420.2009.01240.x
[14] Peng, H.; Lu, Y., Model selection in linear mixed effect models, J. Multivar. Anal., 109, 109-129 (2012) · Zbl 1241.62105 · doi:10.1016/j.jmva.2012.02.005
[15] Qu, A.; Li, R., Quadratic inference functions for varying-coefficient models with longitudinal data, Biometrics, 62, 379-391 (2006) · Zbl 1097.62037 · doi:10.1111/j.1541-0420.2005.00490.x
[16] Schelldorfer, J.; Bühlmann, P.; De Geer, S. V., Estimation for high-dimensional linear mixed-effects models using ℓ1-penalization, Scand. J. Stat., 38, 197-214 (2011) · Zbl 1246.62161 · doi:10.1111/j.1467-9469.2011.00740.x
[17] Sun, Y.; Zhang, W.; Tong, H., Estimation of the covariance matrix of random effects in longitudinal studies, Ann. Stat., 35, 2795-2814 (2007) · Zbl 1129.62053 · doi:10.1214/009053607000000523
[18] Tan, X.; Shiyko, M. P.; Li, R.; Li, Y.; Dierker, L., A time-varying effect model for intensive longitudinal data, Psychol. Methods, 17, 61-77 (2012) · doi:10.1037/a0025814
[19] Thai, H. T.; Mentré, F.; Holford, N. H.; Veyrat-Follet, C.; Comets, E., A comparison of bootstrap approaches for estimating uncertainty of parameters in linear mixed-effects models, Pharm. Stat., 12, 129-140 (2013) · doi:10.1002/pst.1561
[20] Tibshirani, R., Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Series B Stat. Methodol., 58, 267-288 (1996) · Zbl 0850.62538
[21] Tibshirani, R.; Saunders, M.; Rosset, S.; Zhu, J.; Knight, K., Sparsity and smoothness via the fused lasso, J. R. Stat. Soc. Series B Stat. Methodol., 67, 91-108 (2005) · Zbl 1060.62049 · doi:10.1111/j.1467-9868.2005.00490.x
[22] Tibshirani, R. J.; Taylor, J., The solution path of the generalized lasso, Ann. Stat., 39, 1335-1371 (2011) · Zbl 1234.62107 · doi:10.1214/11-AOS878
[23] Wang, L.; Li, H.; Huang, J. Z., Variable selection in nonparametric varying-coefficient models for analysis of repeated measurements, J. Am. Stat. Assoc., 103, 1556-1569 (2008) · Zbl 1286.62034 · doi:10.1198/016214508000000788
[24] Yang, S.; Cranford, J. A.; Li, R.; Zucker, R. A.; Buu, A., A time-varying effect model for studying gender differences in health behavior, Stat. Med., 26, 2812-2820 (2017)
[25] Zhang, D.; Lin, X.; Raz, J.; Sowers, M., Semiparametric stochastic mixed models for longitudinal data, J. Am. Stat. Assoc, 93, 710-719 (1998) · Zbl 0918.62039 · doi:10.1080/01621459.1998.10473723
[26] Zhang, H.; Kim, I.; Park, C. G., Semiparametric Bayesian hierarchical models for heterogeneous population in nonlinear mixed effect model: Application to gastric emptying studies, J. Appl. Stat., 41, 2743-2760 (2014) · Zbl 1514.62969 · doi:10.1080/02664763.2014.928848
[27] Zhang, Y.; Cao, J.; Chen, Z.; Li, X.; Zeng, X. M., B-spline surface fitting with knot position optimization, Comput. Graph., 58, 73-83 (2016) · doi:10.1016/j.cag.2016.05.010
[28] Zhao, H.; Huffer, F.; Niu, X. F., Time-varying coefficient models with ARMA-GARCH structures for longitudinal data analysis, J. Appl. Stat., 42, 309-326 (2015) · Zbl 1514.62976 · doi:10.1080/02664763.2014.949638
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.