×

A finite difference method for elliptic problems with implicit jump condition. (English) Zbl 1513.65276

Summary: In this paper linear elliptic problems with imperfect contact interface are considered, and a second order finite difference method is presented for linear problems, in which implicit jump condition are imposed on the interface. Then, the stability and convergence analysis of the FD scheme are given for the one-dimensional elliptic interface problem. Numerical examples are carried out for the elliptic problems with imperfect contact interfaces, and the results demonstrate that the scheme has second order accuracy for elliptic interface problems of implicit jump conditions with single and multiple imperfect interfaces.

MSC:

65N06 Finite difference methods for boundary value problems involving PDEs
35R35 Free boundary problems for PDEs
35J65 Nonlinear boundary value problems for linear elliptic equations

References:

[1] Samarskii, A., Andreev,V.B., Differential method for elliptic equations[in Russian]. · Zbl 1310.35004
[2] Nauka, Moscow, 1976.
[3] Samarskii, A., Theroy of difference scheme, Moscow, Nauka, 1977. · Zbl 0462.65055
[4] Samarskii, A., Vabishchevich, P. N., Computational heat transfer, Vol. 1, John Wiley& Sons Ltd, 1995.
[5] Huang, Z., Ding, E., Transport theory (Second Edition), Science Press, Beijing, 2008.
[6] López-Ruiz, G., Bravo-Castillero,J., Brenner,R., et al. Variational bounds in composites with nonuniform interfacial thermal resistance, Appl. Math. Model., 2015, 39(23): 7266-7276. · Zbl 1443.74080
[7] Matt, C., Cruz, M., Application of a multiscale finite-element approach to calculate the effective conductivity of particulate media, Comput. Appl. Math., 2002, 21(2): 429-460. · Zbl 1125.80328
[8] Rocha, R., Cruz, M., Computation of the effective conductivity of unidirectional fibrous composites with an interfacial thermal resistance, Numer. Heat Transfer, Part A-Appl. 2001, 39(2): 179-203.
[9] Carslaw, H., Jaeger, C., Conduction of heat in solids, Clarendon Press, Oxford, 1947. · Zbl 0029.37801
[10] Donato, P., Monsurro, S., Homogenization of two heat conductors with an interfacial contact resistance, Anal. Appl., 2004, 2(03): 247-273. · Zbl 1083.35014
[11] Jose, E., Homogenization of a parabolic problem with an imperfect interface, Rev. Roumaine Math. Pures Appl., 2009, 54(3): 189-222. · Zbl 1199.35015
[12] Dorfler, M., Maier, M., An elliptic problem with strongly nonlinear interface condition, Appl. Anal., 2018: 1-17.
[13] Jo, G., Kwak, D. Y., Enriched-conforming methods for elliptic interface problems with im-plicit jump conditions, Adv. Math. Phys., 2018. · Zbl 1440.65213
[14] Donato,P., Some corrector results for composites with imperfect interface, Rend. Mat. Appl., VII. Ser., 2006, 26: 189-209. · Zbl 1129.35008
[15] Beyer, R., LeVeque, R., Analysis of a one-dimensional model for the immersed boundary method, SIAM J. Numer. Anal., 1992, 29: 332-364. · Zbl 0762.65052
[16] LeVeque, J., Lin, Z., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 1994, 31: 1019-1044. · Zbl 0811.65083
[17] Li, Z., Ito, K., Maximum principle preserving schemes for interface problems, J. Sci. Comput., 2001, 23: 339-361 · Zbl 1001.65115
[18] Li, Z., Ito,K., The immersed interface method: numerical solutions of PDEs involving inter-faces and irregular domains, SIAM, Philadelphia, 2006. · Zbl 1122.65096
[19] Wiegmann, A., and Bube,K., The immersed interface method for nonlinear differential equa-tions with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 1998, 35: 177-200. · Zbl 0913.65076
[20] Huang, H., Li, Z., Convergence analysis of the immersed interface method, IMA J. Numer. Anal., 1999, 19: 583-608. · Zbl 0940.65114
[21] Thomas B. J. , Uniform error estimates for Navier-Stokes flow with an exact moving boundary using the immersed interface method, SIAM J. Numer. Anal., 2015,53(4): 2097-2111. · Zbl 1326.76078
[22] Wiegmann, A., and Bube, K., The immersed interface method for nonlinear differential equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 1998, 35: 177-200. · Zbl 0913.65076
[23] Brehm, C., Fasel,H. F., A novel concept for the design of immersed interface methods, J. Comput. Phys., 2013, 242: 234-267. · Zbl 1311.76101
[24] Mittal, H., Ray,R., Solving immersed interface problems using a new interfacial points-based finite difference approach, SIAM J. Sci. Comput., 2018, 40(3): A1860-A1883. · Zbl 1448.65195
[25] Cao, W., Zhang, X., Zhang, Z., et al. Superconvergence of immersed finite volume methods for one-dimensional interface problems, J. Sci. Comput., 2017, 73(2-3): 543-565. · Zbl 1384.65045
[26] Wang, Q., Zhang, Z., A modified immersed volume element method for elliptic interface problems, ANZIAM Journal, 2020, 62(1):42-61. · Zbl 1451.65174
[27] Costa, R., Nóbrega, J. M., Clain, S., et al. Very high-order accurate polygonal mesh finite volume scheme for conjugate heat transfer problems with curved interfaces and imperfect contacts, Comput. Methods Appl. Mech. Engrg., 2019, 357: 112560. · Zbl 1442.74007
[28] He, X., Lin, T., Lin, Y., The convergence of the bilinear and linear immersed finite element solutions to interface problems, Numer. Methods for Partial Differ. Eq., 2012,28(1): 312-330. · Zbl 1241.65090
[29] He, X., Lin, T., Lin, Y., Zhang, X., Immersed finite element methods for parabolic equations with moving interface, Numer. Methods for Partial Differ. Eq., 2013, 29(2): 619-646. · Zbl 1266.65165
[30] Xu, Z., Lin, Y., Lin, T., A method of lines based on immersed finite elements for parabolic moving interface problems, Adv. Appl. Math. Mech. 2013, 5(4):548-568.
[31] He, X., Lin, T., Lin, Y., A selective immersed discontinuous Galerkin method for elliptic interface problems, Math. Methods Appl. Sci., 2014, 37(7): 983-1002. · Zbl 1292.65126
[32] Feng, W., He, X., Lin, Y., Zhang, X., Immersed finite element method for interface problems with algebraic multigrid solver, Commun. Comput. Phys., 2014, 15(4): 1045-1067. · Zbl 1388.65177
[33] Guo, R., Lin, T., Zhang, X., Nonconforming immersed finite element spaces for elliptic inter-face problems, Comput. Math. Appl., 2018, 75(6): 2002-2016. · Zbl 1409.82015
[34] Lin, T., Sheen, D., Zhang, X., A nonconforming immersed finite element method for elliptic interface problems. J. Sci. Comput., 2019, 79(1): 442-463. · Zbl 1415.65260
[35] He, X., Lin, T., Lin, Y., Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions, Int. J. Numer. Anal. Model., 2011, 8(2): 284-301. · Zbl 1211.65155
[36] Lin, T., Lin, Y., Sun, W.-W., Wang, Z., Immersed finite element methods for 4-th order differential equations, J. Comput. Appl. Math., 2011, 235, 13(1): 953-3964. · Zbl 1219.65135
[37] Wang, L., Hou, S., Shi, L., A simple FEM for solving two-dimensional diffusion equation with nonlinear interface jump conditions, CMES-Comput. Model. Engrg. Sci., 2019, 119(1): 73-90.
[38] Guo, R., Lin, T., A higher degree immersed finite element method based on a cauchy extension for elliptic interface problems, SIAM J. Numer. Anal., 2019, 57(4): 1545-1573. · Zbl 1420.65122
[39] Guo, R., Lin, T., Lin, Y., A fixed mesh method with immersed finite elements for solving interface inverse problems, J. Sci. Comput., 2019, 79: 148-175. · Zbl 1458.74135
[40] Guo, R., Lin, T., Lin, Y., Recovering elastic inclusions by shape optimization methods with immersed finite elements, J. Comput. Phys., 2019, 404: 109123. · Zbl 1453.74073
[41] Guo, R., Lin, T., A trilinear immersed finite element method for solving elliptic interface problems, Numer. Anal., 2019, https://arxiv.org/abs/1905.10012.
[42] Guo, R., Lin, T., An immersed finite element method for elliptic interface problems in three dimensions, J. Comput. Phys., 2020, 414, 109478. · Zbl 1440.65207
[43] Gong, Y., Li, Z., Immersed interface finite element methods for elasticity interface problems with non-homogeneous jump conditions, Numer. Math. Theory Methods Appl., 2010, 3 (1): 23-39. · Zbl 1224.65266
[44] Li, Z., Yang, X., An immersed finite element method for elasticity equations with interfaces, Contemp. Math, Amer. Math. Soc., 2015, 383:285-298. · Zbl 1095.74039
[45] Lin, T., Zhang, X., Linear and bilinear immersed finite elements for planar elasticity interface problems, J. Comput. Appl. Math., 2012, 236(18): 4681-4699. · Zbl 1247.74061
[46] Lin, T., Sheen, D., Zhang, X., A locking-free immersed finite element method for planar elasticity interface problems, J. Comput. Phys., 2013, 247(16): 228-247. · Zbl 1349.74328
[47] Lin, T., Yang, Q., Zhang, X., A priori error estimates for some discontinuous Galerkin im-mersed finite element methods, J. Sci. Comput., 2016, 65: 875-894. · Zbl 1331.65154
[48] Lin, T., Lin, Y., Zhuang, Q., Solving interface problems of the Helmholtz equation by im-mersed finite element methods, Commun. Appl. Math. Comput., 2019, 1:187-206. · Zbl 1449.65319
[49] Lin, T., Lin, Y., Sun, W.-W., Error estimation of a class of quadratic immersed finite element method for elliptic interface problems, Discrete Contin. Dyn. Syst. Ser. B, 2007, 7(4): 807-823. · Zbl 1136.65102
[50] Lin, T., Lin, Y., and Zhang, X., Partially penalized immersed finite element methods for elliptic interface problems, SIAM J. Numer. Anal., 2015, 53(2):1121-1144 · Zbl 1316.65104
[51] Lin, T., Lin, Y., and Zhang, X., Partially penalized immersed finite element methods for parabolic interface problems, Numer. Methods for Partial. Differ. Eq., 2015, 31(6):1925-1947. · Zbl 1334.65157
[52] Yang, Q., Numerical analysis of partially penalized immersed finite element methods for hyperbolic interface problems, Numer. Math. Theor. Methods Appl., 2018, 11: 272-298. · Zbl 1424.65173
[53] Guo, R., Lin, T., Zhuang, Q., An improved error estimation for partially penalized immersed finite element methods for elliptic interface problems, Int. J. Numer. Anal. Model., 2019, 16(4): 575-589. · Zbl 1427.65361
[54] Guo, R., Lin, T., Lin, Y., Approximation capabilities of immersed finite element spaces for elasticity Interface problems, Numer. Methods for Partial Differ. Eq., 2019, 35(3):1243-1268. · Zbl 1418.65174
[55] Adjerid, S., Lin, T., Zhuang, Q., Error Estimates for an immersed finite element method for second order hyperbolic equations in inhomogeneous media, J. Sci. Comput., 2020, 84(2),https://doi.org/10.1007/s10915-020-01283-0 · Zbl 1452.65220 · doi:10.1007/s10915-020-01283-0
[56] Adjerid, S., Babuska, I., Guo, R., Lin, T., An enriched immersed finite element method for interface problems with nonhomogeneous jump conditions, Numer. Anal., 2020, http-s://arxiv.org/abs/2004.13244.
[57] Han, D., Wang, P., He, X., Lin, T., Wang, J., A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar surface interactions, J. Comput. Phys., 2016, 321: 965-980. · Zbl 1349.76212
[58] Chernogorova, T., Ewing, R. E., Iliev, O., and Lazarov, R., On the discretization of interface problems with perfect and imperfect contact, Lecture Notes in Physics, New York, Spinger-Verlag, 2000, 552: 93-103. · Zbl 1014.76061
[59] Cao, F.J., Sheng, Z.Q., Yuan, G.W., Monotone finite volume schemes for diffusion equation with imperfect interface on distorted meshes, J. Sci. Comput., 2018, 76(2): 1055-1077. · Zbl 1397.65229
[60] Zhou, H., Sheng, Z., Yuan, G., A finite volume method preserving maximum principle for the diffusion equations with imperfect interface. Appl. Numer. Math., 2020, 158: 314-335. · Zbl 1451.65124
[61] Morton, K. W., and Mayers, D. F., Numerical solution of partial differential equations, Cambridge: Cambridge University Press, 1995.
[62] School of Science, Inner Mongolia University of Science and Technology ,Baotou 014010,Inner Mongolia, P. R. China E-mail: caofujun@imust.edu.cn and yuandf@imust.edu.cn Laboratory of Computational Physics, Institute of Applied Physics and Computational Math-ematics, P. O. Box 8009, Beijing 100088, P. R. China E-mail: sheng zhiqiang@iapcm.ac.cn and yuan guangwei@iapcm.ac.cn School of Science, Inner Mongolia University of Science and Technology ,Baotou 014010,Inner Mongolia, P. R. China E-mail: helimin2003@163.com
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.