×

Local bounds for singular Brascamp-Lieb forms with cubical structure. (English) Zbl 1506.42017

Let \(\mathcal{C}\) be the collection of all functions \(j : \{ 1,\dots, m\} \to \{0, 1\}\) with \(m \geq 2\). Each function \(j\) can be identified with the corner of an \(m\)-dimensional cube \([0,1]^{m}\). For \(j \in \mathcal{C}\), it is defined the projection \(\Pi_j : \mathbb{R}^{2m} \to \mathbb{R}^{m}\) by \(\Pi_j (x_1^{0},\dots, x_m^{0},x_1^{1},\dots, x_m^{1})^{T} = (x_1^{j(1)},\dots, x_m^{j(m)})^{T}\). With this cubical structure, the authors consider the following singular Brascamp-Lieb form \[ p.v. \int_{\mathbb{R}^{2m}} ( \prod_{j \in \mathcal{C}} F_j(\Pi_j x) ) \, K(\Pi x) \, dx, \] where each \(F_j : \mathbb{R}^{m} \to \mathbb{R}\) belongs to \(C_{c}^{\infty}(\mathbb{R}^{m})\), the \(\Pi_j\)’s are as above, \(K\) is a Calderón-Zygmund kernel in \(\mathbb{R}^{m}\) of order \(2^{6m}\), and \(\Pi : \mathbb{R}^{2m} \to \mathbb{R}^{m}\) is a surjective linear map such that for each \(j \in \mathcal{C}\) the composition \(\Pi_j \Pi^{T}\) satisfies certain regularity condition. The main result of this paper is the following: for \(2^{m-1} < p_j \leq \infty\) with \(\sum_{j \in \mathcal{C}} \frac{1}{p_j} = 1\), the authors using the sparse domination technique and local bounds prove that \[ \left| p.v. \int_{\mathbb{R}^{2m}} ( \prod_{j \in \mathcal{C}} F_j(\Pi_j x) ) \, K(\Pi x) \, dx \right| \leq C \prod_{j \in \mathcal{C}} \| F_j \|_{p_j}, \] where \(C\) is a positive constant independent of the \(F_j\)’s. This result generalizes Theorem 1 in [P. Durcik and C. Thiele, Bull. Lond. Math. Soc. 52, No. 2, 283–298 (2020; Zbl 1442.26025)]. Moreover, the threshold \(2^{m-1}\) is sharp.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)

Citations:

Zbl 1442.26025

References:

[1] Barron, A.; Conde-Alonso, JM; Ou, Y.; Rey, G., Sparse domination and the strong maximal function, Adv. Math., 345, 1-26 (2019) · Zbl 1410.42020 · doi:10.1016/j.aim.2019.01.007
[2] Benea, C., Muscalu, C.: Mixed-norm estimates via the helicoidal method. arXiv:2007.01080 (2020)
[3] Culiuc, A.; Di Plinio, F.; Ou, Y., Domination of multilinear singular integrals by positive sparse forms, J. Lond. Math. Soc. (2), 98, 2, 369-392 (2018) · Zbl 1402.42013 · doi:10.1112/jlms.12139
[4] Do, Y.; Thiele, C., \(L^p\) theory for outer measures and two themes of Lennart Carleson united, Bull. Am. Math. Soc. (N.S.), 52, 2, 249-296 (2015) · Zbl 1318.42016 · doi:10.1090/S0273-0979-2014-01474-0
[5] Durcik, P., \(L^p\) estimates for a singular entangled quadrilinear form, Trans. Am. Math. Soc., 369, 10, 6935-6951 (2017) · Zbl 1377.42015 · doi:10.1090/tran/6850
[6] Durcik, P.; Kovač, V.; Rimanić, L., On side lengths of corners in positive density subsets of the Euclidean space, Int. Math. Res. Not., 22, 6844-6869 (2018) · Zbl 1442.05234 · doi:10.1093/imrn/rnx093
[7] Durcik, P.; Kovač, V., A Szemerédi type theorem for subsets of the unit cube, Anal. PDE, 15, 2, 507-549 (2022) · Zbl 1486.05305 · doi:10.2140/apde.2022.15.507
[8] Durcik, P.; Kovač, V.; Škreb, KA; Thiele, C., Norm variation of ergodic averages with respect to two commuting transformations, Ergodic Theory Dyn. Syst., 39, 3, 658-688 (2019) · Zbl 1416.37007 · doi:10.1017/etds.2017.48
[9] Durcik, P.; Roos, J., Averages of simplex Hilbert transforms, Proc. Am. Math. Soc., 149, 2, 633-647 (2021) · Zbl 1455.42008 · doi:10.1090/proc/15196
[10] Durcik, P.; Thiele, C., Singular Brascamp-Lieb inequalities with cubical structure, Bull. Lond. Math. Soc., 52, 2, 283-298 (2020) · Zbl 1442.26025 · doi:10.1112/blms.12310
[11] Durcik, P.; Thiele, C., Singular Brascamp-Lieb: A Survey, Geometric Aspects of Harmonic Analysis (2021), New York: Springer, New York · Zbl 1480.42018
[12] Kovač,, V.; Thiele, C.; Zorin-Kranich, P., Dyadic triangular Hilbert transform of two general functions and one not too general function, Forum Math. Sigma, 3, e25-27 (2015) · Zbl 1335.42009 · doi:10.1017/fms.2015.25
[13] Kovač, V., Boundedness of the twisted paraproduct, Rev. Mat. Iberoam., 28, 4, 1143-1164 (2012) · Zbl 1266.42025 · doi:10.4171/RMI/707
[14] Kovač, V.: Density theorems for anisotropic point configurations. Can. J. Math. to appear. arXiv:2008.01060
[15] Kovač, V.; Stipčić,, M., Convergence of ergodic-martingale paraproducts, Stat. Probab. Lett., 164, 108826-6 (2020) · Zbl 1460.60030 · doi:10.1016/j.spl.2020.108826
[16] Li, K.; Moen, K.; Sun, W., The sharp weighted bound for multilinear maximal functions and Calderón-Zygmund operators, J. Fourier Anal. Appl., 20, 4, 751-765 (2014) · Zbl 1318.42022 · doi:10.1007/s00041-014-9326-5
[17] Lerner, AK; Nazarov, F., Intuitive dyadic calculus: the basics, Expo. Math., 37, 3, 225-265 (2019) · Zbl 1440.42062 · doi:10.1016/j.exmath.2018.01.001
[18] Muscalu, C., Zhai, Y.: Five-linear singular integral estimates of Brascamp-Lieb type. (2020). arXiv:2001.09064
[19] Mirek, M.; Thiele, C., A local \(T(b)\) theorem for perfect multilinear Calderón-Zygmund operators, Proc. Lond. Math. Soc. (3), 114, 1, 35-59 (2017) · Zbl 1380.42014 · doi:10.1112/plms.12000
[20] Nieraeth, Z., Quantitative estimates and extrapolation for multilinear weight classes, Math. Ann., 375, 1-2, 453-507 (2019) · Zbl 1422.42028 · doi:10.1007/s00208-019-01816-5
[21] Oberlin, R.; Thiele, C., New uniform bounds for a Walsh model of the bilinear Hilbert transform, Indiana Univ. Math. J., 60, 5, 1693-1712 (2011) · Zbl 1255.42018 · doi:10.1512/iumj.2011.60.4445
[22] Stipčić, M., \(T(1)\) theorem for dyadic singular integral forms associated with hypergraphs, J. Math. Anal. Appl., 481, 2, 123496-27 (2020) · Zbl 1423.42033 · doi:10.1016/j.jmaa.2019.123496
[23] Zorin-Kranich, P., \(A_p-A_\infty\) estimates for multilinear maximal and sparse operators, J. Anal. Math., 138, 2, 871-889 (2019) · Zbl 1423.42034 · doi:10.1007/s11854-019-0049-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.