×

Matrix functions in network analysis. (English) Zbl 1541.05102

Summary: We review the recent use of functions of matrices in the analysis of graphs and networks, with special focus on centrality and communicability measures and diffusion processes. Both undirected and directed networks are considered, as well as dynamic (temporal) networks. Computational issues are also addressed.
© 2020 Wiley-VCH GmbH

MSC:

05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
65F60 Numerical computation of matrix exponential and similar matrix functions
15A16 Matrix exponential and similar functions of matrices
Full Text: DOI

References:

[1] M.Akbarzadeh and E.Estrada, Communicability geometry captures traffic flow in cities, Nat. Hum. Behav.2 (2018), 645-652.
[2] A.Ali, F.Althukar, and E.Estrada, Gaussianization of the spectra of graphs and networks. Theory and applications, J. Math. Anal. Appl.470 (2018), 876-897. · Zbl 1401.05178
[3] N.Alon et al., Non‐backtracking random walks mix faster, Commun. Contemp. Math.9 (2007), 585-603. · Zbl 1140.60301
[4] H.Alqahtani and L.Reichel, Generalized block anti‐Gauss quadrature rules, Numer. Math.143 (2019), 605-648. · Zbl 07127287
[5] F.Andersson, M.Carlsson, and K.‐M.Perfekt, Operator‐Lipschitz estimates for the singular value functional calculus, Proc. Am. Math. Soc.144 (2016), 1867-1875. · Zbl 1337.47020
[6] M.Aprahamian, D. J.Higham, and D. J.Higham, Matching exponential‐based and resolvent‐based centrality measures, J. Complex Netw.4 (2016), 157-176.
[7] O.Arizmendi, J. F.Hidalgo, and O.Juarez‐Romero, Energy of a vertex, Linear Algebra Appl.557 (2018), 464-495. · Zbl 1396.05065
[8] F.Arrigo and M.Benzi, Updating and downdating techniques for optimizing network communicability, SIAM J. Sci. Comput.38 (2016), B25-B49. · Zbl 1328.05174
[9] F.Arrigo and M.Benzi, Edge modification criteria for enhancing the communicability of digraphs, SIAM J. Matrix Anal. Appl.37 (2016), 443-468. · Zbl 1336.05120
[10] F.Arrigo, M.Benzi, and C.Fenu, Computation of generalized matrix functions, SIAM J. Matrix Anal. Appl.37 (2016), 836-860. · Zbl 1342.65121
[11] F.Arrigo et al., Non‐backtracking walk centrality for directed networks, J. Complex Netw.6 (2017), 54-78. · Zbl 1460.90040
[12] F.Arrigo et al., On the exponential generating function for non‐backtracking walks, Linear Algebra Appl.556 (2018), 381-399. · Zbl 1394.05119
[13] J.Aurentz et al., Stable computation of generalized matrix functions via polynomial interpolation, SIAM J. Matrix Anal. Appl.40 (2019), 210-234. · Zbl 1409.65030
[14] J.Baglama et al., Analysis of directed networks via partial singular value decomposition and Gauss quadrature, Linear Algebra Appl.456 (2014), 93-121. · Zbl 1295.05216
[15] A. L.Barabasi, Linked: The New Science of Networks, Perseus, Cambridge, UK, 2002.
[16] P.Bartesaghi et al., Risk‐dependent centrality in economic and financial networks, SIAM J. Finan. Math.11 (2020), 526-565. · Zbl 1444.91218
[17] B.Beckermann, D.Kressner, and M.Schweitzer, Low‐rank updates of matrix functions, SIAM J. Matrix Anal. Appl.39 (2018), 539-565. · Zbl 1390.15024
[18] M.Benzi, A note on walk entropies in graphs, Linear Algebra Appl.445 (2014), 395-399. · Zbl 1285.05162
[19] M.Benzi et al., Non‐local network dynamics via fractional graph Laplacians, J. Complex Netw.8 (3), (2020), cnaa017. https://doi.org/10.1093/comnet/cnaa017. · Zbl 1461.90020 · doi:10.1093/comnet/cnaa017
[20] M.Benzi and P.Boito, Quadrature rule‐based bounds for functions of adjacency matrices, Linear Algebra Appl.433 (2010), 637-652. · Zbl 1191.65046
[21] M.Benzi, P.Boito, and N.Razouk, Decay properties of spectral projectors with applications to electronic structure, SIAM Rev.55 (2013), 3-64. · Zbl 1377.65155
[22] M.Benzi, E.Estrada, and C.Klymko, Ranking hubs and authorities using matrix functions, Linear Algebra Appl.438 (2013), 2447-2474. · Zbl 1258.05067
[23] M.Benzi and R.Huang, Some matrix properties preserved by generalized matrix functions, Spec. Matr.7 (2019), 27-37. · Zbl 1436.15007
[24] M.Benzi and C.Klymko, Total communicability as a centrality measure, J. Complex Netw.1 (2013), 124-149.
[25] M.Benzi and C.Klymko, On the limiting behavior of parameter‐dependent network centrality measures, SIAM J. Matrix Anal. Appl.36 (2015), 686-706. · Zbl 1314.05113
[26] G.Berkolaiko and P.Kuchment, Introduction to Quantum Graphs, American Mathematical Society, Providence, RI, 2013. · Zbl 1318.81005
[27] M.Berljafa, S.Elsworth, and S.Güttel, The Rational Krylov Toolbox for Matlab, available at http://guettel.com/rktoolbox/index.html (last access: August 20, 2020).
[28] A.Berman and R. J.Plemmons, Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics, Vol 9, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1994. · Zbl 0815.15016
[29] R. F.Betzel et al., Optimally controlling the human connectome: The role of network topology, Sci. Rep.6 (2016), 30770.
[30] S.Boccaletti et al., Complex networks: Structure and dynamics, Phys. Rep.424 (2006), 175-308. · Zbl 1371.82002
[31] P.Bonacich, Power and centrality: A family of measures, Am. J. Soc.92 (1987), 1170-1182.
[32] U.Brandes (ed.) and T.Erlebach (ed.), Eds., Network Analysis: Methodological Foundations, Lecture Notes in Computer Science, Vol 3418, Springer, Berlin, Germany, 2005. · Zbl 1069.68001
[33] R.Breiger and P.Pattison, Cumulated social roles: The duality of persons and their algebras, Soc. Netw8 (1986), 215-256.
[34] S.Brin and L.Page, The anatomy of a large‐scale hypertextual web search engine, Comput. Netw. ISDN Syst.33 (1998), 107-117.
[35] L.Candeloro, L.Savini, and A.Conte, A new weighted degree centrality measure: The application in an animal disease epidemic, PLoS One11 (2016), e0165781.
[36] H.Cetinay, K.Devriendt, and P.Van Mieghem, Nodal vulnerability to targeted attacks in power grids, Appl. Netw. Sci.3 (2018), 34.
[37] P.Chebotarev, The walk distances in graphs, Discret. Appl. Math.160 (2012), 1484-1500. · Zbl 1243.05070
[38] I.Chen et al., Dynamic communicability and epidemic spread: A case study on an empirical dynamic contact network, J. Complex Netw.5 (2017), 274-302.
[39] F.Chung, The heat kernel as the pagerank of a graph, Proc. Natl. Acad. Sci.104 (2007), 19735-19740.
[40] F.Chung and O.Simpson, Computing heat kernel pagerank and a local clustering algorithm, Eur. J. Comb.68 (2018), 96-119. · Zbl 1373.05188
[41] J. J.Crofts et al., Mapping directed networks, Electron. Trans. Numer. Anal.37 (2010), 337-350. · Zbl 1205.65166
[42] J. J.Crofts and D. J.Higham, A weighted communicability measure applied to complex brain networks, J. Royal Soc. Interface6 (2009), 411-414.
[43] J. J.Crofts et al., Network analysis detects changes in the contralesional hemisphere following stroke, NeuroImage54 (2011), 161-169.
[44] D.Cvetković, P.Rowlinson, and S.Simić, Eigenspaces of Graphs, Cambridge University Press, Cambridge, MA, 1997. · Zbl 0878.05057
[45] K.Das, S.Samanta, and M.Pal, Study on centrality measures in social networks: A survey, Soc. Netw. Anal. Min.8 (2018), 13.
[46] T.Davis, Y.Hu, S.Kolodziej, SuiteSparse matrix collection. https://sparse.tamu.edu.
[47] N.Del Buono, L.Lopez, and R.Peluso, Computation of the exponential of large sparse skew‐symmetric matrices, SIAM J. Sci. Comput.27 (2005), 278-293. · Zbl 1108.65037
[48] N.Del Buono, L.Lopez, and T.Politi, Computation of functions of Hamiltonian and skew‐symmetric matrices, Math. Comput. Simul.79 (2008), 1284-1297. · Zbl 1162.65338
[49] M. A.deReus and M. P.van denHeuvel, Simulated rich club lesioning in brain networks: A scaffold for communication and integration?Front. Hum. Neurosci.8 (2014), 647-651. https://doi.org/10.3389/fnhum.2014.00647. · doi:10.3389/fnhum.2014.00647
[50] M.D’Errico et al., Shareholding networks and centrality: An application to the Italian financial market, in Networks, Topology and Dynamics, Springer, Berlin, Heidelberg/Germany, 2009, 215-228. · Zbl 1154.91590
[51] R.Diestel, Graph Theory, Springer‐Verlag, Berlin, Germany, 2000. · Zbl 0945.05002
[52] E.Estrada, Community detection based on network communicability, Chaos21 (2011), 016103. · Zbl 1345.91063
[53] E.Estrada, Complex networks in the Euclidean space of communicability distances, Phys. Rev. E85 (2012), 066122.
[54] E.Estrada, Path Laplacian matrices: Introduction and application to the analysis of consensus in networks, Linear Algebra Appl.436 (2012), 3373-3391. · Zbl 1241.05077
[55] E.Estrada, The communicability distance in graphs, Linear Algebra Appl.436 (2012c), 4317-4328. · Zbl 1243.05071
[56] E.Estrada, The Structure of Complex Networks: Theory and Applications, Oxford University Press, Oxford, UK, 2012d. · Zbl 1267.05001
[57] E.Estrada, Communicability in temporal networks, Phys. Rev. E88 (2013), 042811.
[58] E.Estrada, Communicability geometry of multiplexes, New J. Phys.21 (2019), 015004.
[59] E.Estrada, A. A.Almhomaidhi, and F.Al‐Thukair, Exploring the “Middle Earth” of network spectra, Chaos27 (2017), 023109. · Zbl 1390.05126
[60] E.Estrada and F.Arrigo, Predicting triadic closure in networks using communicability distance functions, SIAM J. Appl. Math.75 (2015), 1725-1744. · Zbl 1320.05073
[61] E.Estrada and M.Benzi, What is the meaning of the graph energy after all?Discret. Appl. Math.230 (2017), 71-77. · Zbl 1368.05094
[62] E.Estrada and J.Goméz‐Gardenes, Network bipartivity and the transportation efficiency of European passenger airlines, Phys. D Nonlinear Phenomena323 (2016), 20-26. · Zbl 1364.90041
[63] E.Estrada et al., Path Laplacian operators and superdiffusive processes on graphs. I. One‐dimensional case, Linear Algebra Appl.523 (2017b), 307-334. · Zbl 06766348
[64] E.Estrada et al., Path Laplacian operators and superdiffusive processes on graphs. II. Two‐dimensional lattice, Linear Algebra Appl.555 (2018), 373-397. · Zbl 06914735
[65] E.Estrada and N.Hatano, Statistical‐mechanical approach to subgraph centrality in complex networks, Chem. Phys. Lett.439 (2007), 247-251.
[66] E.Estrada and N.Hatano, Communicability in complex networks, Phys. Rev. E, 77 (2008), Article 036111.
[67] E.Estrada and N.Hatano, Communicability graph and community structures in complex networks, Appl. Math. Comput.214 (2009), 500-511. · Zbl 1284.05253
[68] E.Estrada and N.Hatano, Communicability angle and the spatial efficiency of networks, SIAM Rev.58 (2016), 692-715. · Zbl 1348.05199
[69] E.Estrada, N.Hatano, and M.Benzi, The physics of communicability in complex networks, Phys. Rep.514 (2012), 89-119.
[70] E.Estrada and D. J.Higham, Network properties revealed through matrix functions, SIAM Rev.52 (2010), 696-714. · Zbl 1214.05077
[71] E.Estrada and J. A.Rodríguez‐Velázquez, Subgraph centrality in complex networks, Phys. Rev. E71 (2005), 056103.
[72] E.Estrada and J. A.Rodríguez‐Velázquez, Spectral measures of bipartivity in complex networks, Phys. Rev. E72 (2005), 046105.
[73] E.Estrada, E.Vargas‐Estrada, and H.Ando, Communicability angles reveal the critical links in network consensus dynamics, Phys. Rev. E, 92 (2015), Article 052809.
[74] A.Farahat et al., Authority rankings from HITS, PageRank, and SALSA: Existence, uniqueness, and effect of initialization, SIAM J. Sci. Comput.27 (2006), 1181-1201. · Zbl 1094.68111
[75] C.Fenu et al., Network analysis via partial spectral factorization and Gauss quadrature, SIAM J. Sci. Comput.35 (2013), A2046-A2068. · Zbl 1362.65052
[76] C.Fenu et al., Block Gauss and anti‐Gauss quadrature with application to networks, SIAM J. Matrix Anal. Appl.34 (2013), 1655-1684. · Zbl 1425.65063
[77] M.Fiedler, Algebraic connectivity of graphs, Czechoslov. Math. J.23 (1973), 298-305. · Zbl 0265.05119
[78] P.Fika and M.Mitrouli, Estimation of the bilinear form y* f(A)x for Hermitian matrices, Linear Algebra Appl.502 (2016), 140-158. · Zbl 1336.65068
[79] P.Fika and M.Mitrouli, Aitken’s method for estimating bilinear forms arising in applications, Calcolo54 (2017), 455-470. · Zbl 1372.65125
[80] V.Fioriti and M.Chinnici, Identifying sparse and dense sub‐graphs in large graphs with a fast algorithm, Europhys. Lett.108 (2014), 50006.
[81] K. T.Forbush, C. S. Q.Siew, and M. S.Vitevitch, Application of network analysis to identify interactive systems of eating disorder psychopathology, Psychol. Med.46 (2016), 2667-2677.
[82] L.Freeman, A set of measures of centrality based on betweenness, Sociometry40 (1977), 35-41.
[83] L.Freeman, Centrality in networks. I: Conceptual clarification, Soc. Networks1 (1979), 215-239.
[84] A.Frommer and V.Simoncini, Matrix functions, in Model Order Reduction: Theory, Research Aspects and Applications, W.Schilders (ed.) and H. A.Van derVorst (ed.), Eds., Springer‐Verlag, Berlin, Germany, 2008.
[85] A.Ghosh, S.Boyd, Growing well‐connected graphs, Proceedings of the 45th IEEE Conference on Decision and Control, IEEE, New York, NY2006, pp. 6605-6611.
[86] M.Girvan and M. E.Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci99 (2002), 7821-7826. · Zbl 1032.91716
[87] E.Gladilin, Graph‐theoretical model of global human interactome reveals enhanced long‐range communicability in cancer networks, PLoS One12 (2017), e0170953. https://doi.org/10.1371/journal.pone.0170953. · doi:10.1371/journal.pone.0170953
[88] G. H.Golub (ed.) and G.Meurant (ed.), Matrices, moments and quadrature, in: Numerical Analysis, 1993, D.F.Griffiths (ed.), G.A.Watson (ed.) (Eds.), Pitman research notes in mathematics, vol. 303, Essex, England, 1994, pp. 105-156. · Zbl 0795.65019
[89] G. H.Golub and G.Meurant, Moments and Quadrature with Applications, Princeton University Press, Princeton, NJ, 2010. · Zbl 1217.65056
[90] G. H.Golub and C. F.Van Loan, Matrix Computations, 4th ed., Johns Hopkins University Press, Baltimore and London, 2013. · Zbl 1268.65037
[91] M. M.Gravert, R. J.Dolan, and T. E. J.Behrens, A map of abstract relational knowledge in the human hippocampal‐entorhinal cortex, elife2017 (2017), e17086. https://doi.org/10.7554/eLife.17086. · doi:10.7554/eLife.17086
[92] P.Grindrod and D. J.Higham, A matrix iteration for dynamic network summaries, SIAM Rev.55 (2013), 118-128. · Zbl 1262.91121
[93] P.Grindrod et al., Communicability across evolving networks, Phys. Rev. E83 (2011), 046120.
[94] S.Güttel, funm_kryl: A restart code for the evaluation of matrix functions. http://guettel.com/funm_kryl/.
[95] S.Güttel, Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection, GAMM‐Mitteilungen36 (2013), 8-31. · Zbl 1292.65043
[96] S.Güttel, D.Kressner, and K.Lund, Limited‐memory polynomial methods for large‐scale matrix functions, (2020), arXiv preprint arXiv:2002.01682.
[97] J. B.Hawkins and A.Ben‐Israel, On generalized matrix functions, Linear and Multilinear Algebra1 (1973), 163-171. · Zbl 0291.15004
[98] N. J.Higham, Functions of Matrices: Theory and Computations, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2008. · Zbl 1167.15001
[99] M.Hochbruck and C.Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal.34 (1997), 1911-1925. · Zbl 0888.65032
[100] S.Hoory, N.Linial, and A.Wigderson, Expander graphs and their applications, Bull. New Ser. Am Math Soc43 (2006), 439-561. · Zbl 1147.68608
[101] R. A.Horn and C. R.Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, Cambridge, MA, 2013. · Zbl 1267.15001
[102] E.Horton, K.Kloster, and B. D.Sullivan, Subgraph centrality and walk‐regularity, Linear Algebra Appl.570 (2019), 225-244. · Zbl 1411.05241
[103] L.Katz, A new status index derived from sociometric analysis, Psychometrica18 (1953), 39-43. · Zbl 0053.27606
[104] J.Kempe, Quantum random walks – an introductory overview, Contemp. Phys.44 (2003), 307-327.
[105] J.Kleinberg, Authoritative sources in a hyperlinked environment, J. ACM46 (1999), 604-632. · Zbl 1065.68660
[106] K.Kloster and D. F.Gleich, A nearly‐sublinear method for approximating a column of the matrix exponential for matrices from large, sparse networks, in Algorithms and Models for the Web Graph, Vol 8305, Springer, Springer, Cham, 2013, 68-79. · Zbl 1342.05165
[107] K.Kloster, D.Král, and B. D.Sullivan, Walk entropy and walk‐regularity, Linear Algebra Appl.546 (2018), 115-121. · Zbl 1391.05169
[108] I. T.Koponen and M.Nousiainen, Concept networks in learning: Finding key concepts in learners’ representations of the interlinked structure of scientific knowledge, J. Complex Netw.2 (2014), 187-202.
[109] A. N.Langville and C. D.Meyer, Google’s PageRank and Beyond: The Science of Search Engine Rankings, Princeton University Press, Princeton, NJ, 2006. · Zbl 1104.68042
[110] X.Li, Y.Shi, and I.Gutman, Graph Energy, Springer, New York, NY/Heidelberg, Germany/Dordrecht, Netherlands and London, UK, 2012. · Zbl 1262.05100
[111] J.Liesen and Z.Strakoš, Krylov Subspace Methods: Principles and Analysis, Oxford University Press, Oxford, UK, 2013. · Zbl 1263.65034
[112] G.Meurant, MMQ Toolbox for MATLAB. http://gerard.meurant.pagesperso‐orange.fr/.
[113] Y.Miao, L.Qi, and Y.Wei, Generalized tensor function via the singular value decomposition based on the T‐product, Linear Algebra Appl.590 (2020), 258-303. · Zbl 1437.15034
[114] M.Mitrouli and P.Roupa, Vector estimates for f(A) b via extrapolation, Electron. Trans. Numer. Anal.47 (2017), 179-196. · Zbl 1392.65096
[115] H. E.Moghadam et al., Complex networks analysis in Iran stock market: The application of centrality, Phys. A: Stat. Mech. Appl.531 (2019), 121800.
[116] D.Mugnolo, Semigroup Methods for Evolution Equations on Networks, Springer, Cham, 2014. · Zbl 1306.47001
[117] L.Mussone and R.Notari, A comparative analysis of underground and bus transit networks through graph theory, Environ. Plann. B Urban Anal. City Sci. (2019). https://doi.org/10.1177/2399808319879460. · doi:10.1177/2399808319879460
[118] E.Nathan and G.Sanders, Personalized ranking in dynamic graphs using nonbacktracking walks, in International Conference on Computational Science Lecture Notes in Computer Science, Vol 11537, J. M. F.Rodrigues (ed.) et al., Eds., Springer, Cham, 2019, 276-289.
[119] Z.Nedev, Algebraic characterization of strongly connected graphs, Int. J. Pure Appl. Math.81 (2012), 1-8. · Zbl 1256.05132
[120] M.Newman, The structure and function of complex networks, SIAM Rev.45 (2003), 167-256. · Zbl 1029.68010
[121] M.Newman, Networks, 2nd ed., Oxford University Press, Oxford, UK, 2018. · Zbl 1391.94006
[122] V.Nikiforov, Beyond graph energy: Norms of graphs and energies, Linear Algebra Appl.506 (2015), 82-138. · Zbl 1344.05089
[123] V.Noferini, A formula for the Fréchet derivative of a generalized matrix function, SIAM J. Matrix Anal. Appl.38 (2017), 434-457. · Zbl 1367.65071
[124] R.Olfati‐Saber, J. A.Fax, and R. M.Murray, Consensus and cooperation in networked multi‐agent systems, Proc. IEEE95 (2007), 215-233. · Zbl 1376.68138
[125] M.Pereda and E.Estrada, Visualization and machine learning analysis of complex networks in hyperspherical space, Pattern Recogn.86 (2019), 320-331.
[126] P. P.Petrushev and V. A.Popov, Rational Approximation of Real Functions. Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, MA, 1987. · Zbl 0644.41010
[127] S.Pozza, M.Pranić, and Z.Strakoš, The Lanczos algorithm and complex Gauss quadrature, Electron. Trans. Numer. Anal.50 (2018), 1-19. · Zbl 06965964
[128] S.Pozza and F.Tudisco, On the stability of network indices defined by means of matrix functions, SIAM J. Matrix Anal. Appl.39 (2018), 1521-1546. · Zbl 1401.65050
[129] M.Pranić and L.Reichel, Generalized anti‐Gauss quadrature rules, J. Comput. Appl. Math.284 (2015), 235-243. · Zbl 1314.65038
[130] A.Rapoport, Mathematical models of social interaction, in Handbook of Mathematical Psychology, Vol 2, Wiley, New York, NY, 1963, 493-579.
[131] L.Reichel, M. M.Spalević, and T.Tang, Generalized averaged Gauss quadrature rules for the approximation of matrix functionals, BIT Numer. Math.56 (2016), 1045-1067. · Zbl 1352.65089
[132] L.Reichel, G.Rodriguez, and T.Tang, New block quadrature rules for the approximation of matrix functions, Linear Algebra Appl.502 (2016), 299-326. · Zbl 1338.65122
[133] A. P.Riascos and J. L.Mateos, Fractional dynamics on networks. Emergence of anomalous diffusion and Lévy flights, Phys. Rev. E90 (2014), 032809.
[134] A. P.Riascos and J. L.Mateos, Random walks on weighted networks: Exploring local and non‐local navigation strategies; 2019. arXiv:1901.05609v1 [cond‐mat.stat‐mech].
[135] F.Riquelme and P.González‐Cantergiani, Measuring user influence on Twitter: A survey, Inf. Process. Manag.52 (2016), 949-975.
[136] Y.Saad, Iterative Methods for Large Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2003. · Zbl 1031.65046
[137] Y.Saad, Numerical Methods for Large Eigenvalue Problems. Classics in Applied Mathematics, Vol 66, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2011. · Zbl 1242.65068
[138] E.Santiago, J. X.Velasco‐Hernandez, and M.Romero‐Salcedo, A descriptive study of fracture networks in rocks using complex network metrics, Comput. Geosci.88 (2016), 97-114.
[139] J. R.Seeley, The net of reciprocal influence: A problem in treating sociometric data, Can. J. Psychol.3 (1949), 234-240.
[140] T. C.Silva, S. R.Stancato Souza, and B.Miranda Tabak, Monitoring vulnerability and impact diffusion in financial networks, J. Econ. Dyn. Control.76 (2017), 109-135. · Zbl 1401.91566
[141] G.Silver, M.Akbarzadeh, and E.Estrada, Tuned communicability metrics in networks. The case of alternative routes for urban traffic, Chaos Soliton. Fract.116 (2018), 402-413. · Zbl 1442.90042
[142] A.Streiwieser, Molecular Orbital Theory for Organic Chemists, John Wiley and Sons, New York, NY, 1961.
[143] P.Suau, E. R.Hancock, and F.Escolano, Graph characteristics from the Schrödinger operator, in Graph‐based representations in pattern recognition. Lecture notes in computer science, Vol 7877, Springer, Cham, 2013, 172-181. · Zbl 1382.68182
[144] D.Taylor, M. A.Porter, P. J.Mucha, Tunable eigenvector‐based centralities for multiplex and temporal networks; (2019). arXiv preprint arXiv:1904.02059. · Zbl 1457.90033
[145] L. N.Trefethen, Approximation Theory and Approximation Practice, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2013. · Zbl 1264.41001
[146] L. W.Veergossen et al., White matter connectivity abnormalities in prediabetes and Type 2 diabetes: The Maastricht study, Diabetes Care43 (2020), 201-208.
[147] D. A.Walker and A.Tordesillas, Topological evolution in dense granular materials: A complex network perspective, Int. J. Solids Struct.47 (2010), 624-639. · Zbl 1183.74043
[148] H.Wang and C.Ye, Error bounds for the Krylov subspace methods for the computation of the matrix exponential, SIAM J. Matrix Anal. Appl.38 (2017), 155-187. · Zbl 1365.65136
[149] Y.Xu, A spectral method to detect community structure based on the communicability modularity, Phys. A Stat Mech. Appl.537 (2020), 122751. · Zbl 07571832
[150] H.Yang, I.King, and M. R.Lyu, DiffusionRank: A possible penicillin for Web spamming, SIGIR 2007 Proceedings, ACM 978‐1‐59593‐597‐7/07/0007. Association for Computing Machinery, ACM, New York, NY, 2007.
[151] Z.Yu et al., Friend recommendation with content spread enhancement in social networks, Inf. Sci.309 (2015), 102-118.
[152] W. W.Zachary, An information flow model for conflict and fission in small groups, J. Anthropol. Res.33 (1977), 452-473.
[153] W.Zhao et al., Research on influence spread of scientific research team based on scientific factor quantification of big data, Int. J. Distr. Sensor Netw.15 (2019). https://doi.org/10.1177/1550147719842158. · doi:10.1177/1550147719842158
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.